The following Protocol contains medical necessity criteria that apply for this service. It is applicable to Medicare Advantage products unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Preauthorization is required for Medicare Advantage members; for all other products it is not required but is recommended if, despite this Protocol position you feel this service is medically necessary. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

Description

Functional neuromuscular electrical stimulation (NMES) is a method being developed to restore function to patients with damaged or destroyed nerve pathways through use of an orthotic device with microprocessor controlled electrical neuromuscular stimulation (neuroprosthesis).

Background

Neural prosthetic devices consist of an orthotic and a microprocessor-based electronic stimulator with one or more channels for delivery of individual pulses through surface or implanted electrodes connected to the neuromuscular system. Microprocessor programs activate the channels sequentially or in unison to stimulate peripheral nerves and trigger muscle contractions to produce functionally useful movements that allow patients to sit, stand, walk, and grasp. Functional neuromuscular stimulators are closed-loop systems, which provide feedback information on muscle force and joint position, thus allowing constant modification of stimulation parameters which are required for complex activities such as walking. These are contrasted with open-loop systems, which are used for simple tasks such as muscle strengthening alone, and typically in healthy individuals with intact neural control.

One application of functional NMES is to restore upper extremity functions such as grasp-release, forearm pronation, and elbow extension in patients with stroke, or C5 and C6 tetraplegia (quadriplegia). The Neurocontrol Freehand system is an implantable upper extremity neuroprosthesis intended to improve a patient’s ability to grasp, hold, and release objects and is indicated for use in patients who are tetraplegic due to C5 or C6 spinal cord injury. The implantable Freehand System is no longer marketed in the U.S., though the company provides maintenance for devices already implanted. The Handmaster NMS I (neuromuscular stimulator) is another device that uses surface electrodes and is purported to provide hand active range of motion and function for patients with stroke or C5 tetraplegia.

Other neural prosthetic devices have been developed for functional NMES in patients with footdrop. Footdrop is weakness of the foot and ankle that causes reduced dorsiflexion and difficulty with ambulation. It can have various causes such as cerebral palsy, stroke or multiple sclerosis (MS). Functional electrical stimulation of the peroneal nerve has been suggested for these patients as an aid in raising the toes during the swing phase of ambulation. In these devices, a pressure sensor detects heel off and initial contact during walking. A signal is then sent to the stimulation cuff, initiating or pausing the stimulation of the peroneal nerve, which activates the foot dorsiflexors. Examples of such devices used for treatment of footdrop are the Innovative Neurotronics’
(formerly NeuroMotion Inc.) WalkAide®, Bioness’ radiofrequency controlled NESS L300™, and the Odstock Foot Drop Stimulator. An implantable peroneal nerve stimulator system (ActiGait) is being developed in Europe.

Another application of functional electrical stimulation is to provide spinal cord-injured patients with the ability to stand and walk. Generally, only spinal cord injury patients with lesions from T4 to T12 are considered candidates for ambulation systems. Lesions at T1 to T3 are associated with poor trunk stability, while lumbar lesions imply lower-extremity nerve damage. Using percutaneous stimulation, the device delivers trains of electrical pulses to trigger action potentials at selected nerves at the quadriceps (for knee extension), the common peroneal nerve (for hip flexion), and the paraspinals and gluteals (for trunk stability). Patients use a walker or elbow-support crutches for further support. The electrical impulses are controlled by a computer microchip attached to the patient’s belt that synchronizes and distributes the signals. In addition, there is a finger-controlled switch that permits patient activation of the stepping.

Other devices include a reciprocating gait orthosis with electrical stimulation. The orthosis used is a cumbersome hip-knee-ankle-foot device linked together with a cable at the hip joint. The use of this device may be limited by the difficulties in putting the device on and taking it off.

Neuromuscular stimulation is also proposed for motor restoration in hemiplegia and treatment of secondary dysfunction (e.g., muscle atrophy and alterations in cardiovascular function and bone density) associated with damage to motor nerve pathways. These applications are not addressed in this Protocol.

Regulatory Status

The Neurocontrol Freehand system received approval from the U.S. Food and Drug Administration (FDA) in 1997 through the premarket approval (PMA) process. The Handmaster NMS I system was originally cleared for use in maintaining or improving range of motion, reducing muscle spasm, preventing or retarding muscle atrophy, providing muscle re-education, and improving circulation; in 2001, its 510(k) marketing clearance was expanded to include provision of hand active range of motion and function for patients with C5 tetraplegia.

The WalkAide device first received 510(k) marketing clearance from FDA in the 1990s; the current version of the WalkAide device received 510(k) marketing clearance in September 2005. The Odstock Foot Drop Stimulator received 510(k) marketing clearance in 2005. The Bioness NESS L300 received 510(k) marketing clearance in July 2006. FDA summaries for the devices state that they are intended to be used in patients with drop foot by assisting with ankle dorsiflexion during the swing phase of gait.

To date, the Parastep® Ambulation System is the only noninvasive functional walking neuromuscular stimulation device to receive PMA from FDA. The Parastep device is approved to “enable appropriately selected skeletally mature spinal cord injured patients (level C6-T12) to stand and attain limited ambulation and/or take steps, with assistance if required, following a prescribed period of physical therapy training in conjunction with rehabilitation management of spinal cord injury.”

Related Protocols

Microprocessor-Controlled Prostheses for the Lower Limb

Myoelectric Prosthetic Components for the Upper Limb

Policy (Formerly Corporate Medical Guideline)

Neuromuscular stimulation is considered **investigational** as a technique to restore function following nerve damage or nerve injury. This includes its use in the following situations:

- As a technique to provide ambulation in patients with spinal cord injury; or
To provide upper extremity function in patients with nerve damage (e.g., spinal cord injury or post-stroke); or

To improve ambulation in patients with foot drop caused by congenital disorders (e.g., cerebral palsy) or nerve damage (e.g., post-stroke or in those with multiple sclerosis).

Medicare Advantage

For Medicare Advantage this is medically necessary for spinal cord injury (SCI) patients for walking, who have completed a training program which consists of at least 32 physical therapy sessions with the device over a period of three months. The trial period of physical therapy will enable the physician treating the patient for his or her spinal cord injury to properly evaluate the person’s ability to use these devices frequently and for the long term. Physical therapy necessary to perform this training must be directly performed by the physical therapist as part of a one-on-one training program.

The goal of physical therapy must be to train SCI patients on the use of neuromuscular electrical stimulation/functional electrical stimulation (NMES/FES) devices to achieve walking, not to reverse or retard muscle atrophy.

Coverage for NMES/FES for walking is medically necessary in SCI patients with all of the following characteristics:

1. Persons with intact lower motor unite (L1 and below) (both muscle and peripheral nerve);
2. Persons with muscle and joint stability for weight bearing at upper and lower extremities that can demonstrate balance and control to maintain an upright support posture independently;
3. Persons that demonstrate brisk muscle contraction to NMES and have sensory perception electrical stimulation sufficient for muscle contraction;
4. Persons that possess high motivation, commitment and cognitive ability to use such devices for walking;
5. Persons that can transfer independently and can demonstrate independent standing tolerance for at least three minutes;
6. Persons that can demonstrate hand and finger function to manipulate controls;
7. Persons with at least six-month post recovery spinal cord injury and restorative surgery;
8. Persons with hip and knee degenerative disease and no history of long bone fracture secondary to osteoporosis; and
9. Persons who have demonstrated a willingness to use the device long-term.

NMES/FES for walking is not medically necessary in SCI patient with any of the following:

1. Persons with cardiac pacemakers;
2. Severe scoliosis or severe osteoporosis;
3. Skin disease or cancer at area of stimulation;
4. Irreversible contracture; or
5. Autonomic dysreflexia.

The only settings where therapists with the sufficient skills to provide these services are employed are inpatient hospitals; outpatient hospitals; comprehensive outpatient rehabilitation facilities; and outpatient rehabilitation facilities. The physical therapy necessary to perform this training must be part of a one-on-one training program.

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are...
considered investigational. *For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.*

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. **Some of this Protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.**

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

33. Meilahn JR. Tolerability and Effectiveness of a Neuroprosthesis for the Treatment of Footdrop in Pediatric Patients With Hemiparetic Cerebral Palsy. PM R 2013.
