The following Protocol contains medical necessity criteria that apply for this service. It is applicable to Medicare Advantage products unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. **Preauthorization is not required.** Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

Description

Radiation therapy is an integral component in the treatment of head and neck cancers. Intensity-modulated radiation therapy (IMRT) has been proposed as a method of radiation therapy that allows adequate radiation therapy to the tumor while minimizing the radiation dose to surrounding normal tissues and critical structures.

Background

Radiation techniques

Conventional external-beam radiation therapy. Over the past several decades, methods to plan and deliver radiation therapy have evolved in ways that permit more precise targeting of tumors with complex geometries. Most early trials used two-dimensional treatment planning based on flat images and radiation beams with cross-sections of uniform intensity that were sequentially aimed at the tumor along two or three intersecting axes. Collectively, these methods are termed “conventional external-beam radiation therapy.”

3-dimensional conformal radiation (3D-CRT). Treatment planning evolved by using 3-dimensional images, usually from computed tomography (CT) scans, to delineate the boundaries of the tumor and discriminate tumor tissue from adjacent normal tissue and nearby organs at risk for radiation damage. Computer algorithms were developed to estimate cumulative radiation dose delivered to each volume of interest by summing the contribution from each shaped beam. Methods also were developed to position the patient and the radiation portal reproducibly for each fraction and immobilize the patient, thus maintaining consistent beam axes across treatment sessions. Collectively, these methods are termed 3-dimensional conformal radiation therapy (3D-CRT).

Intensity-modulated radiation therapy (IMRT). IMRT, which uses computer software and computed tomography (CT) images, offers better conformality than 3D-CRT as it is able to modulate the intensity of the overlapping radiation beams projected on the target and to use multiply-shaped treatment fields. It uses a device (a multileaf collimator, MLC) which, coupled to a computer algorithm, allows for “inverse” treatment planning. The radiation oncologist delineates the target on each slice of a CT scan and specifies the target’s prescribed radiation dose, acceptable limits of dose heterogeneity within the target volume, adjacent normal tissue volumes to avoid, and acceptable dose limits within the normal tissues. Based on these parameters and a digitally reconstructed radiographic image of the tumor and surrounding tissues and organs at risk, computer software optimizes the location, shape, and intensities of the beams’ ports, to achieve the treatment plan’s goals.

Increased conformality may permit escalated tumor doses without increasing normal tissue toxicity and thus may improve local tumor control, with decreased exposure to surrounding, normal tissues, potentially reducing
acute and late radiation toxicities. Better dose homogeneity within the target may also improve local tumor control by avoiding underdosing within the tumor and may decrease toxicity by avoiding overdosing.

Since most tumors move as patients breathe, dosimetry with stationary targets may not accurately reflect doses delivered within target volumes and adjacent tissues in patients. Furthermore, treatment planning and delivery are more complex, time-consuming, and labor-intensive for IMRT than for 3D-CRT. Thus, clinical studies must test whether IMRT improves tumor control or reduces acute and late toxicities when compared with 3D-CRT.

Multiple-dose planning studies have generated 3D-CRT and IMRT treatment plans from the same scans, then compared predicted dose distributions within the target and in adjacent organs at risk. Results of such planning studies show that IMRT improves on 3D-CRT with respect to conformity to, and dose homogeneity within, the target. Dosimetry using stationary targets generally confirms these predictions. Thus, radiation oncologists hypothesized that IMRT may improve treatment outcomes compared with those of 3D-CRT. However, these types of studies offer indirect evidence on treatment benefit from IMRT, and it is difficult to relate results of dosing studies to actual effects on health outcomes.

Comparative studies of radiation-induced side effects from IMRT versus alternative radiation delivery are probably the most important type of evidence in establishing the benefit of IMRT. Such studies would answer the question of whether the theoretical benefit of IMRT in sparing normal tissue translates into real health outcomes. Single-arm series of IMRT can give some insights into the potential for benefit, particularly if an adverse effect that is expected to occur at high rates is shown to decrease by a large amount. Studies of treatment benefit are also important to establish that IMRT is at least as good as other types of delivery, but in the absence of such comparative trials, it is likely that benefit from IMRT is at least as good as with other types of delivery.

Head and Neck Tumors

Head and neck cancers account for approximately 3% to 5% of cancer cases in the United States. The generally accepted definition of head and neck cancers includes cancers arising from the oral cavity and lip, larynx, hypopharynx, oropharynx, nasopharynx, paranasal sinuses and nasal cavity, salivary glands, and occult primaries in the head and neck region. Cancers generally not considered as head and neck cancers include uveal and choroidal melanoma, cutaneous tumors of the head and neck, esophageal cancer, and tracheal cancer. Thyroid cancers are also addressed in this Protocol. External-beam radiation therapy is uncommonly used in the treatment of thyroid cancers but may be considered in patients with anaplastic thyroid cancer and for locoregional control in patients with incompletely resected high-risk or recurrent differentiated (papillary, follicular, or mixed papillary-follicular) thyroid cancer.

Related Protocols

Intensity-Modulated Radiation Therapy (IMRT): Abdomen and Pelvis

Intensity-Modulated Radiation Therapy (IMRT): Central Nervous System Tumors

Policy (Formerly Corporate Medical Guideline)

Intensity-modulated radiation therapy may be considered medically necessary for the treatment of head and neck cancers.

Intensity-modulated radiation therapy is considered medically necessary for the treatment of thyroid cancers in close proximity to organs at risk (esophagus, salivary glands, and spinal cord) and 3D-CRT planning is not able to meet dose volume constraints for normal tissue tolerance (see Policy Guidelines).

Intensity-modulated radiation therapy is considered not medically necessary in all other situations.
Protocol: Intensity-Modulated Radiation Therapy (IMRT): Cancer of the Head and Neck or Thyroid

Policy Guideline

For this Protocol, head and neck cancers are cancers arising from the oral cavity and lip, larynx, hypolarynx, oropharynx, nasopharynx, paranasal sinuses and nasal cavity, salivary glands, and occult primaries in the head and neck region.

Organs at risk are defined as normal tissues whose radiation sensitivity may significantly influence treatment planning and/or prescribed radiation dose. These organs at risk may be particularly vulnerable to clinically important complications from radiation toxicity. The following table outlines radiation doses that are generally considered tolerance thresholds for these normal structures in the area of the thyroid.

Radiation tolerance doses for normal tissues

<table>
<thead>
<tr>
<th>Site</th>
<th>Portion of organ involved</th>
<th>TD 5/5 (Gy)</th>
<th>TD 50/5 (Gy)</th>
<th>Complication End Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esophagus</td>
<td>1/3 2/3 3/3</td>
<td>60 58 55</td>
<td>72 70 68</td>
<td>Stricture, perforation</td>
</tr>
<tr>
<td>Salivary glands</td>
<td>1/3 2/3 3/3</td>
<td>32 32 32</td>
<td>46 46 46</td>
<td>Xerostomia</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>50 (5-10 cm) NP 47 (20 cm)</td>
<td>50 (5-10 cm) NP</td>
<td>50 (5-10 cm) NP</td>
<td>Myelitis, necrosis</td>
</tr>
</tbody>
</table>

aTD 5/5, the average dose that results in a 5% complication risk within five years

bTD 50/5, the average dose that results in a 50% complication risk within five years

NP: not provided

cm=centimeters

The tolerance doses in the table are a compilation from the following two sources:

Kehwar TS, Sharma SC. Use of normal tissue tolerance doses into linear quadratic equation to estimate normal tissue complication probability. http://www.rooj.com/Radiation%20Tissue%20Tolerance.htm

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. *For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.*

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. *Some of this Protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.*

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

