The following Protocol contains medical necessity criteria that apply for this service. It is applicable to Medicare Advantage products unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Preauthorization is required and must be obtained through Case Management. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

Description

Hematopoietic Stem-Cell Transplantation

Hematopoietic stem-cell transplantation (HSCT) refers to a procedure in which hematopoietic stem cells are infused to restore bone marrow function in cancer patients who receive bone-marrow-toxic doses of cytotoxic drugs with or without whole-body radiation therapy. Hematopoietic stem cells may be obtained from the transplant recipient (autologous HSCT) or from a donor (allogeneic HSCT). They can be harvested from bone marrow, peripheral blood, or umbilical cord blood shortly after delivery of neonates. Although cord blood is an allogeneic source, the stem cells in it are antigenically “naïve” and thus are associated with a lower incidence of rejection or graft-versus-host disease (GVHD).

Immunologic compatibility between infused hematopoietic stem cells and the recipient is not an issue in autologous HSCT. However, immunologic compatibility between donor and patient is a critical factor for achieving a good outcome of allogeneic HSCT. Compatibility is established by typing of human leukocyte antigens (HLA) using cellular, serologic, or molecular techniques. HLA refers to the tissue type expressed at the Class I and Class II loci on chromosome 6. Depending on the disease being treated, an acceptable donor will match the patient at all or most of the HLA loci (with the exception of umbilical cord blood).

Conventional Preparative Conditioning for HSCT

The success of autologous HSCT is predicated on the ability of cytotoxic chemotherapy with or without radiation to eradicate cancerous cells from the blood and bone marrow. This permits subsequent engraftment and repopulation of bone marrow space with presumably normal hematopoietic stem cells obtained from the patient prior to undergoing bone marrow ablation. As a consequence, autologous HSCT is typically performed as consolidation therapy when the patient’s disease is in complete remission (CR). Patients who undergo autologous HSCT are susceptible to chemotherapy-related toxicities and opportunistic infections prior to engraftment, but not GVHD.

The conventional (“classical”) practice of allogeneic HSCT involves administration of cytotoxic agents (e.g., cyclophosphamide, busulfan) with or without total-body irradiation at doses sufficient to destroy endogenous hematopoietic capability in the recipient. The beneficial treatment effect in this procedure is due to a combination of initial eradication of malignant cells and subsequent graft-versus-malignancy (GVM) effect mediated by non-self immunologic effector cells that develop after engraftment of allogeneic stem cells within the patient’s bone marrow space. While the slower GVM effect is considered to be the potentially curative component, it may be overwhelmed by extant disease without the use of pretransplant conditioning. However, intense conditioning regimens are limited to patients who are sufficiently fit medically to tolerate substantial
adverse effects that include pre-engraftment opportunistic infections secondary to loss of endogenous bone marrow function and organ damage and failure caused by the cytotoxic drugs. Furthermore, in any allogeneic HSCT, immunosuppressant drugs are required to minimize graft rejection and GVHD, which also increases susceptibility of the patient to opportunistic infections.

Reduced-Intensity Conditioning for Allogeneic HSCT

Reduced-intensity conditioning (RIC) refers to the pretransplant use of lower doses or less intense regimens of cytotoxic drugs or radiation than are used in traditional full-dose myeloablative conditioning treatments. The goal of RIC is to reduce disease burden but also to minimize as much as possible associated treatment-related morbidity and non-relapse mortality (NRM) in the period during which the beneficial GVM effect of allogeneic transplantation develops. Although the definition of RIC remains arbitrary, with numerous versions employed, all seek to balance the competing effects of NRM and relapse due to residual disease. RIC regimens can be viewed as a continuum in effects, from nearly totally myeloablative to minimally myeloablative with lymphoablation, with intensity tailored to specific diseases and patient condition. Patients who undergo RIC with allogeneic HSCT initially demonstrate donor-cell engraftment and bone-marrow mixed chimerism. Most will subsequently convert to full-donor chimerism, which may be supplemented with donor lymphocyte infusions to eradicate residual malignant cells.

For the purposes of this Protocol, the term reduced-intensity conditioning (RIC) will refer to all conditioning regimens intended to be non-myeloablative, as opposed to fully myeloablative (traditional) regimens.

Hodgkin Lymphoma

Hodgkin Lymphoma (HL) is a relatively uncommon B cell lymphoma. In 2011, the estimated number of cases in the U.S. was approximately 8,830 new diagnoses and 1,300 deaths. (1) The disease has a bimodal distribution, with most patients diagnosed between the ages of 15 and 30 years, with a second peak in adults aged 55 years and older.

The 2008 World Health Organization (WHO) classification divides HL into two main types (2):

1. “Classical” HL (CHL)
 - Nodular sclerosis
 - Mixed cellularity
 - Lymphocyte depleted
 - Lymphocyte rich
2. Nodular Lymphocyte-Predominant HL (NLPHL)

In Western countries, CHL accounts for 95% of cases of HL and NLPHL only 5%. (3) Classic HL is characterized by the presence of neoplastic Reed-Sternberg cells in a background of numerous non-neoplastic inflammatory cells. NLPHL lacks Reed-Sternberg cells but is characterized by the presence of lymphocytic and histiocytic cells termed “popcorn cells.” (3)

The following staging system for HL recognizes that the disease is thought to typically arise in a single lymph node and spread to contiguous lymph nodes with eventual involvement of extranodal sites. The staging system attempts to distinguish patients with localized HL who can be treated with extended field radiation from those who require systemic chemotherapy.

Staging for Hodgkin Lymphoma

Staging for HL is based on the Ann Arbor staging system. Each stage is subdivided into A and B categories. “A” indicates no systemic symptoms are present, and “B” indicates the presence of systemic symptoms, including unexplained weight loss of more than 10% of body weight, unexplained fevers, or drenching night sweats. (3)
Stage I
Involvement of a single lymph node region (I) or localized involvement of a single extralymphatic organ or site (IE)

Stage II
Involvement of two or more lymph node regions on the same side of the diaphragm (II) or localized involvement of a single associated extralymphatic organ or site and its regional lymph node(s) with or without involvement of other lymph node regions on the same side of the diaphragm (IIE). The number of lymph node regions involved should be indicated by a subscript (e.g., II₂).

Stage III
Involvement of lymph node regions or structures on both sides of the diaphragm. These patients are further subdivided as follows:

III-1: disease limited to spleen or upper abdomen
III-2: periaortic or pelvic node involvement

Stage IV
Disseminated (multifocal) involvement of one or more extralymphatic organs, with or without associated lymph node involvement, or isolated extralymphatic organ involvement with distant (nonregional) nodal involvement.

Patients with HL are generally classified into three groups: early-stage favorable (stage I–II with no B symptoms or large mediastinal lymphadenopathy), early-stage unfavorable (stage I–II with large mediastinal mass, with or without B symptoms; stage IB–IIB with bulky disease), and advanced-stage disease (stage III–IV). (3)

Patients with nonbulky stage IA or IIA disease are considered to have clinical early-stage disease. These patients are candidates for chemotherapy, combined modality therapy, or radiation therapy alone. (1) Patients with obvious stage III or IV disease, bulky disease (defined as a 10-cm mass or mediastinal disease with a transverse diameter exceeding 33% of the transthoracic diameter), or the presence of B symptoms will require combination chemotherapy with or without additional radiation therapy. (1)

HL is highly responsive to conventional chemotherapy, and up to 80% of newly diagnosed patients can be cured with combination chemotherapy and/or radiation therapy. Patients who prove refractory or who relapse after first-line therapy have a significantly worse prognosis. Primary refractory HL is defined as disease regression of less than 50% after four to six cycles of anthracycline-containing chemotherapy, disease progression during induction therapy, or progression within 90 days after the completion of first-line treatment. (4)

In patients with relapse, the results of salvage therapy vary depending upon a number of prognostic factors, as follows: the length of the initial remission, stage at recurrence, and the severity of anemia at the time of relapse. (5) Early and late relapse are defined as less or more than 12 months from the time of remission, respectively. Approximately 70% of patients with late first relapse can be salvaged by autologous HSCT but not more than 40% with early first relapse. (6)

Only approximately 25-35% of patients with primary progressive or poor-risk recurrent HL achieve durable remission after autologous HSCT, with most failures being due to disease progression after transplant. Most relapses after transplant occur within one to two years, and once relapse occurs post-transplant, median survival is less than 12 months.

Policy (Formerly Corporate Medical Guideline)
Autologous or myeloablative allogeneic hematopoietic stem-cell transplantation (HSCT) may be considered
medically necessary in patients with primary refractory or relapsed Hodgkin lymphoma (HL).

Tandem autologous HSCT may be considered medically necessary:
- in patients with primary refractory HL or
- in patients with relapsed disease with poor risk features who do not attain a complete remission to cytoreductive chemotherapy prior to transplantation (see Policy Guidelines).

Reduced-intensity allogeneic HSCT may be considered medically necessary to treat HL in patients:
- who have failed a prior autologous HSCT used to treat primary refractory or relapsed disease or
- in patients who would otherwise qualify for a myeloablative allogeneic transplant, but would be unable to tolerate a standard myeloablative conditioning regimen (see Policy Guidelines) or
- when insufficient stem cells are collected for an autologous HSCT.

Second autologous stem-cell transplantation for relapsed lymphoma after a prior autologous HSCT is considered investigational.

Other uses of HSCT in patients with HL are considered investigational, including, but not limited to, initial therapy for newly diagnosed disease to consolidate a first complete remission.

Policy Guideline

In the Morschhauser et al study of risk-adapted salvage treatment with single or tandem autologous hematopoietic stem-cell transplantation (HSCT) for first relapse or refractory Hodgkin lymphoma (HL), (7) poor-risk relapsed HL was defined as two or more of the following risk factors at first relapse: time to relapse less than 12 months, stage III or IV at relapse, and relapse within previously irradiated sites. Primary refractory disease was defined as disease regression less than 50% after four to six cycles of doxorubicin-containing chemotherapy or disease progression during induction or within 90 days after the end of first-line treatment.

Some patients for whom a conventional myeloablative allotransplant could be curative may be considered candidates for reduced-intensity conditioning (RIC) allogeneic HSCT. These include those with malignancies that are effectively treated with myeloablative allogeneic transplantation, but whose age (typically older than 55 years) or comorbidities (e.g., liver or kidney dysfunction, generalized debilitation, prior intensive chemotherapy, low Karnofsky Performance Status) preclude use of a standard myeloablative conditioning regimen.

The ideal allogeneic donors are human leukocyte antigen (HLA)-identical matched siblings. Related donors mismatched at one locus are also considered suitable donors. A matched, unrelated donor identified through the National Marrow Donor Registry is typically the next option considered. Recently, there has been interest in haploidentical donors, typically a parent or a child of the patient, with whom usually there is sharing of only three of the six major histocompatibility antigens. The majority of patients will have such a donor; however, the risk of GVHD and overall morbidity of the procedure may be severe, and experience with these donors is not as extensive as that with matched donors.

Benefit Application

Individual transplant facilities may have their own additional requirements or protocols that must be met in order for the patient to be eligible for a transplant at their facility.
Medicare Advantage

If a transplant is needed, we arrange to have the transplant center review and decide whether the patient is an appropriate candidate for the transplant.

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this Protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

