The following Protocol contains medical necessity criteria that apply for this service. It is applicable to Medicare Advantage products unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Preauthorization is required. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

Description

Chondral and osteochondral grafts are used in repair of full-thickness chondral defects involving the joint. In the case of osteochondral autografts, one or more small osteochondral plugs are harvested from non-weight-bearing sites in the knee and press fit into a prepared site in the lesion. Osteochondral allografts are typically used for larger lesions to reduce donor site morbidity. Autologous or allogeneic minced cartilage is also being evaluated as a treatment of articular cartilage lesions.

Background

Focal chondral defects of the knee, either due to trauma or other conditions such as osteochondritis dissecans, often fail to heal on their own and may be associated with pain, loss of function, disability, and the long-term complication of osteoarthritis. The ideal resurfacing technique would eliminate symptoms, restore normal biomechanics of the knee joint, and prevent the long-term emergence of osteoarthritis and the necessity for total knee arthroplasty. Various methods of cartilage resurfacing have been investigated including marrow-stimulation techniques such as subchondral drilling, microfracture, and abrasion arthroplasty, all of which are considered standard therapies and all of which attempt to restore the articular surface by inducing the growth of fibrocartilage into the chondral defect. However, fibrocartilage does not share the same biomechanical properties as hyaline cartilage, and thus various strategies for chondral resurfacing with hyaline cartilage have been investigated.

Both fresh and cryopreserved allogeneic osteochondral grafts have been used with some success, although cryopreservation decreases the viability of cartilage cells, and fresh allografts may be difficult to obtain and create concerns regarding infectious diseases. As a result, autologous osteochondral grafts have been investigated as an option to increase the survival rate of the grafted cartilage and to eliminate the risk of disease transmission. Autologous grafts are limited by the small number of donor sites; thus allografts are typically used for larger lesions. In an effort to extend the amount of the available donor tissue, investigators have used multiple, small osteochondral cores harvested from non-weight-bearing sites in the knee for treatment of full-thickness chondral defects. Several systems are available for performing this procedure, the Mosaicplasty System (Smith and Nephew), the Osteochondral Autograft Transfer System (OATS, Arthrex, Inc.), and the COR and COR2 systems (DePuy-Mitek). Although mosaicplasty and OATS may use different instrumentation, the underlying principle is similar; i.e., the use of multiple osteochondral cores harvested from a non-weight-bearing region of the femoral condyle and autografted into the chondral defect. These terms have been used interchangeably to describe the procedure.
Preparation of the chondral lesion involves debridement and preparation of recipient tunnels. Multiple individual osteochondral cores are harvested from the donor site, typically from a peripheral non-weight-bearing area of the femoral condyle. Donor plugs range from 6-10 mm in diameter. The grafts are press fit into the lesion in a mosaic-like fashion into the same-sized tunnels. The resultant surface consists of transplanted hyaline articular cartilage and fibrocartilage, which is thought to provide “grouting” between the individual autografts. Mosaicplasty may be performed with either an open approach or arthroscopically. Osteochondral autografting has also been investigated as a treatment of unstable osteochondritis dissecans lesions using multiple dowel grafts to secure the fragment. While osteochondral autografting is primarily performed on the femoral condyles of the knee, osteochondral grafts have also been used to repair chondral defects of the patella, tibia, and ankle. With osteochondral autografting, the harvesting and transplantation can be performed during the same surgical procedure. Technical limitations of osteochondral autografting are difficulty in restoring concave or convex articular surfaces, incongruity of articular surfaces that can alter joint contact pressures, short-term fixation strength and load-bearing capacity, donor site morbidity, and lack of peripheral integration with peripheral chondrocyte death associated with graft harvesting and insertion.

Recently, a minimally processed osteochondral allograft (Chondrofix®, Zimmer) has become available for use. Chondrofix® is composed of decellularized hyaline cartilage and cancellous bone and can be used “off the shelf” with precut cylinders (7-15 mm). Multiple cylinders may be used to fill a larger defect in a manner similar to OATS or mosaicplasty.

Filling defects with minced articular cartilage (autologous or allogeneic), is another single-stage procedure that is being investigated for cartilage repair. The Cartilage Autograft Implantation System (CAIS, Johnson and Johnson, Phase III trial) harvests cartilage and disperses chondrocytes on a scaffold in a single-stage treatment. BioCartilage® (Arthrex) consists of a micronized allogeneic cartilage matrix that is intended to provide a scaffold for microfracture. DeNovo NT Graft (Natural Tissue Graft) is produced by ISTO Technologies with exclusive distribution rights by Zimmer. DeNovo NT consists of manually minced cartilage tissue pieces obtained from juvenile allograft donor joints. The tissue fragments are mixed intra-operatively with fibrin glue before implantation in the prepared lesion. It is thought that mincing the tissue helps both with cell migration from the extracellular matrix and with fixation. As there is no use of chemicals and minimal manipulation, the allograft tissue does not require U.S. Food and Drug Administration (FDA) approval for marketing. DeNovo® ET Live Chondral Engineered Tissue Graft (Neocartilage) is marketed by ISTO Technologies outside of the U.S. DeNovo® ET graft uses juvenile allogeneic cartilage cells engineered by ISTO Technologies. The FDA approved ISTO’s Investigational New Drug (IND) application for Neocartilage in 2006, which allowed them to pursue Phase III clinical trials of the product in humans.

Autologous chondrocyte implantation (ACI) is another method of cartilage repair involving the harvesting of normal chondrocytes from normal non-weight-bearing articular surfaces, which are then cultured and expanded in vitro and implanted back into the chondral defect. ACI techniques are discussed in a separate Protocol.

Related Protocols

- Meniscal Allografts and Other Meniscus Implants
- Autologous Chondrocyte Implantation for Focal Articular Cartilage Lesions

Policy (Formerly Corporate Medical Guideline)

Osteochondral allografting may be considered **medically necessary** as a technique to repair large (e.g., 10 cm²) full-thickness chondral defects of the knee caused by acute or repetitive trauma.

Osteochondral allografting for all other joints is considered **investigational**.
Osteochondral autografting, using one or more cores of osteochondral tissue, may be considered medically necessary for the treatment of symptomatic full-thickness cartilage defects of the knee caused by acute or repetitive trauma in patients who have had an inadequate response to a prior surgical procedure, when all of the following have been met:

- Adolescent patients should be skeletally mature with documented closure of growth plates (e.g., 15 years or older). Adult patients should be too young to be considered an appropriate candidate for total knee arthroplasty or other reconstructive knee surgery (e.g., younger than 55 years).
- Focal, full thickness (grade III or IV) unipolar lesions on the weight-bearing surface of the femoral condyles trochea, or patella that are between one and 2.5 cm² in size
- Documented minimal to absent degenerative changes in the surrounding articular cartilage (Outerbridge Grade II or less), and normal-appearing hyaline cartilage surrounding the border of the defect
- Normal knee biomechanics, or alignment and stability achieved concurrently with osteochondral grafting

Osteochondral autografting for all other joints, including talar, and any indications other than those listed above, is considered investigational.

Treatment of focal articular cartilage lesions with autologous minced cartilage is considered investigational.

Treatment of focal articular cartilage lesions with allogeneic minced cartilage is considered investigational.

Policy Guidelines

If debridement is the only prior surgical treatment, consideration should be given to marrow-stimulating techniques before osteochondral grafting is performed.

Severe obesity, e.g., body mass index greater than 35 kg/m², may affect outcomes due to the increased stress on weight-bearing surfaces of the joint.

Misalignment and instability of the joint are contraindications. Therefore additional procedures, such as repair of ligaments or tendons or creation of an osteotomy for realignment of the joint, may be performed at the same time. In addition, meniscal allograft transplantation may be performed in combination, either concurrently or sequentially, with osteochondral allografting or osteochondral autografting.

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this Protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

