The following Protocol contains medical necessity criteria that apply for this service. It is applicable to Medicare Advantage products unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Preauthorization is not required but is recommended if, despite this Protocol position, you feel this service is medically necessary. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

Description
Interspinous spacers are small devices implanted between the vertebral spinous processes. After implantation, the device is opened or expanded to distract (open) the neural foramen and decompress the nerves. Interlaminar spacers are implanted midline between adjacent lamina and spinous processes to provide dynamic stabilization following decompressive surgery.

Background
Interspinous spacers are devices implanted between vertebral spinous processes. Interlaminar spacers are implanted between adjacent lamina and have two sets of wings that are placed around the inferior and superior spinous processes. These implants aim to restrict painful motion while otherwise enabling normal motion. The devices (spacers) distract the laminar space and/or spinous processes and restrict extension. This procedure theoretically enlarges the neural foramen and decompresses the cauda equina in patients with spinal stenosis and neurogenic claudication. Other types of dynamic posterior stabilization devices are pedicle screw/rod-based devices and total facet replacement systems; these are not covered in this Protocol.

One type of interspinous implant is inserted between the spinous processes through a small (4-8 cm) incision and acts as a spacer between the spinous processes, maintaining the flexion of that spinal interspace. The supraspinous ligament is maintained and assists in holding the implant in place. The surgery does not include any laminotomy, laminectomy, or foraminotomy at the time of insertion, thus reducing the risk of epidural scarring and cerebrospinal fluid leakage. Other interspinous spacers require removal of the interspinous ligament and are secured around the upper and lower spinous processes. Interlaminar implants are inserted between the adjacent lamina and spinous processes following decompressive surgery.

Regulatory Status
In November 2005, the X-STOP® Interspinous Process Decompression (IPD®) System (Kyphon-now part of Medtronic Spine LLC) was approved by the U.S. Food and Drug Administration (FDA) for “treatment of patients aged 50 or older suffering from neurogenic intermittent claudication secondary to a confirmed diagnosis of lumbar spinal stenosis.” It is approved for patients with moderately impaired physical function who have had a regimen of at least six months of nonoperative treatment and who have relief of their pain when in flexion. The device is approved for implantation at one or two lumbar levels in patients whose condition warrants surgery at no more than two levels. The X-STOP PEEK (polyetheretherketone) received approval in 2006 and is a modified version of the X-STOP that includes a PEEK spacer and additional 16-mm spacer size. The indications are the same as for the X-STOP titanium model.
FDA lists the following contraindications to use of the X-STOP:

- an allergy to titanium or titanium alloy;
- spinal anatomy or disease that would prevent implantation of the device or cause the device to be unstable in situ, such as:
 - significant instability of the lumbar spine, e.g., isthmic spondylolisthesis or degenerative spondylolisthesis greater than grade 1.0 (on a scale of I-4);
 - an ankylosed segment at the affected level(s);
 - acute fracture of the spinous process or pars interarticularis;
 - significant scoliosis (Cobb angle greater than 25°);
- cauda equina syndrome defined as neural compression causing neurogenic bowel or bladder dysfunction;
- diagnosis of severe osteoporosis, defined as bone mineral density (from dual energy x-ray absorptiometry or some comparable study) in the spine or hip that is more than 2.5 [standard deviations] SD below the mean of adult normals in the presence of one or more fragility fractures;
- active systemic infection or infection localized to the site of implantation.

The coflex® Interlaminar Technology implant (Paradigm Spine) was approved by FDA in 2012 (P110008). It is a single-piece U-shaped titanium alloy dynamic stabilization device with pairs of wings that surround the superior and inferior spinous processes. This device was previously called the Interspinous U.

The coflex® is indicated for use in one- or two-level lumbar stenosis from L1-L5 in skeletally mature patients with at least moderate impairment in function, who experience relief in flexion from their symptoms of leg/buttocks/groin pain, with or without back pain, and who have undergone at least six months of nonoperative treatment. The coflex® is intended to be implanted midline between adjacent lamina of one or two contiguous lumbar motion segments. Interlaminar stabilization is performed after decompression of stenosis at the affected level(s).

FDA lists the following contraindications to use of the coflex®:

- Prior fusion or decompressive laminectomy at any index lumbar level.
- Radiographically compromised vertebral bodies at any lumbar level(s) caused by current or past trauma or tumor (e.g., compression fracture).
- Severe facet hypertrophy that requires extensive bone removal which would cause instability.
- Grade II or greater spondylolisthesis.
- Isthmic spondylolisthesis or spondylolysis (pars fracture).
- Degenerative lumbar scoliosis (Cobb angle > 250°).
- Osteoporosis.
- Back or leg pain of unknown etiology.
- Axial back pain only, with no leg, buttock, or groin pain.
- Morbid obesity defined as a body mass index > 40.
- Active or chronic infection - systemic or local.
- Known allergy to titanium alloys or magnetic resonance imaging (MRI) contrast agents.
- Cauda equina syndrome defined as neural compression causing neurogenic bowel or bladder dysfunction.

The FDA labeling also contains multiple precautions and the following warnings:

Coflex® Interlaminar Technology should only be used by surgeons who are experienced and have undergone
hands-on training in the use of this device. Only surgeons who are familiar with the implant components, instruments, procedure, clinical applications, biomechanics, adverse events, and risks associated with the coflex® Interlaminar Technology should use this device. A lack of adequate experience and/or training may lead to a higher incidence of adverse events.

Data has demonstrated that spinous process fractures can occur with coflex® implantation. Potential predictors for spinous process fractures include:

- Over-decompression during surgery leading to instability in the spine,
- Resection of the spinous process to ≤ 14 mm,
- Height of the spinous process ≤ 23 mm pre-operatively,
- Osteopenia or osteoporosis, and
- “Kissing” spinous processes.

If a spinous process fracture occurs during the surgical procedure, the surgeon should assess if sufficient bone stock exists for coflex® implantation.

Continued FDA approval of the coflex® is contingent on annual reports of two postapproval studies to provide longer-term device performance and device performance under general conditions of use. One study will provide five-year follow-up of the cohort in the pivotal investigational device exemption trial. The second will be a multicenter trial with 230 patients with follow-up at five years that compares decompression alone versus decompression plus coflex®.

The Wallis® System (originally from Abbott Spine; currently from Zimmer Spine) was introduced in Europe in 1986. The first-generation Wallis implant was a titanium block; the second-generation device is composed of a plastic-like polymer that is inserted between adjacent processes and held in place with a flat cord that is wrapped around the upper and lower spinous processes. The Wallis System is currently being tested in an FDA-regulated clinical trial. Also in an FDA-regulated clinical trial is the DIAM™ Spinal Stabilization System (Medtronic Sofamor Danek), which is a soft interspinous spacer with a silicone core. The DIAM system requires removal of the interspinous ligament and is secured with laces around the upper and lower spinous processes. Other clinical trials underway at U.S. centers are studying the In-Space (Synthes), Superion® (Vertiflex), and FLEXUS™ (Globus Medical) devices; the comparator in these trials is the X-STOP device.

ExtendSure and CoRoent (both from NuVasive) were launched in Europe in 2005 and 2006. The NL-Prow™ (Non-Linear Technologies), Aperius® (Medtronic Spine), and Falena® (Mikai) devices are in trials in Europe.

Related Protocols

Facet Arthroplasty

Interspinous Fixation (Fusion) Devices

Policy (Formerly Corporate Medical Guideline)

Interspinous distraction devices are considered investigational as a treatment of neurogenic intermittent claudication.

Use of an interlaminar stabilization device following decompressive surgery is considered investigational.

Medicare Advantage

For Medicare Advantage a spinous process distraction device will be considered medically appropriate
the conditions as allowed in the Food and Drug Administration (FDA) pre-market approval (for a spinous process distraction device). The device is indicated for treatment of patients aged 50 and older suffering from neurogenic intermittent claudication secondary to confirmed diagnosis of lumbar spinal stenosis (with x-ray, MRI, and/or CT evidence of thickened ligamentum flavum, narrowed lateral recess and/or central canal narrowing).

It is indicated for those patients with moderately impaired physical function, symptom relief of leg/buttock/groin pain, with or without back pain, with flexion, and persistence of symptoms after at least six months of non-operative treatment.

For use of an interlaminar stabilization device see above general business investigational statement.

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this Protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

