The following Protocol contains medical necessity criteria that apply for this service. It is applicable to Medicare Advantage products unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Preauthorization is not required but is recommended if, despite this Protocol position, you feel this service is medically necessary. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

Description

Current techniques for diagnosing and monitoring asthma and predicting exacerbations are suboptimal. Two new strategies, evaluation of exhaled nitric oxide (NO) and exhaled breath condensate are proposed. These techniques are also potentially useful in the management of other conditions such as chronic obstructive pulmonary disease (COPD) and chronic cough. There are commercially available devices for measuring NO in expired breath and various laboratory techniques for evaluating components of exhaled breath condensate.

Background

Asthma is characterized by airway inflammation that leads to airway obstruction and hyper-responsiveness, which in turn lead to characteristic clinical symptoms including wheezing, shortness of breath, cough, and chest tightness. Guidelines for the management of persistent asthma stress the importance of long-term suppression of inflammation using steroids, leukotriene inhibitors, or other anti-inflammatory drugs. Existing techniques for monitoring the status of underlying inflammation have focused on bronchoscopy, with lavage and biopsy, or analysis by induced sputum. Given the cumbersome nature of these techniques, the ongoing assessment of asthma focuses not on the status of the underlying chronic inflammation, but rather on regular assessments of respiratory parameters such as forced expiratory volume in one second (FEV1) and peak flow. Therefore, there has been interest in noninvasive techniques to assess the underlying pathogenic chronic inflammation as reflected by measurements of inflammatory mediators.

Two proposed strategies are the measurement of exhaled nitric oxide (NO) and the evaluation of exhaled breath condensate. Nitric oxide is an important endogenous messenger and inflammatory mediator that is widespread in the human body, functioning, for example, to regulate peripheral blood flow, platelet function, immune reactions, and neurotransmission and to mediate inflammation. In biologic tissues, NO is unstable, limiting measurement. However, in the gas phase, NO is fairly stable, permitting its measurement in exhaled air. Exhaled NO is typically measured during single breath exhalations. First, the subject inspires nitric oxide-free air via a mouthpiece until total lung capacity is achieved, followed immediately by exhalation through the mouthpiece into the measuring device. Several devices measuring exhaled NO are commercially available in the United States. According to a 2009 joint statement by the American Thoracic Society (ATS) and European Respiratory Society (ERS), there is a consensus that the fractional concentration of exhaled nitric oxide (FeNO) is best measured at an exhaled rate of 50 mL per second (FeNO 50 mL/s) maintained within 10% for more than six seconds at an oral pressure between 5 and 20 cm H2O. (1) Results are expressed as the NO concentration in parts per billion (ppb), based on the mean of two or three values.
Exhaled breath condensate (EBC) consists of exhaled air passed through a condensing or cooling apparatus, resulting in an accumulation of fluid. Although EBC is primarily derived from water vapor, it also contains aerosol particles or respiratory fluid droplets, which in turn contain various nonvolatile inflammatory mediators, such as cytokines, leukotrienes, oxidants, antioxidants, and various other markers of oxidative stress. There are a variety of laboratory techniques to measure the components of EBC, including such simple techniques as pH measurement, to the more sophisticated gas chromatography/mass spectrometry or high performance liquid chromatography, depending on the component of interest.

Measurement of NO and EBC has been investigated in the diagnosis and management of asthma. Potential uses in management of asthma include assessing response to anti-inflammatory treatment, monitoring compliance with treatment, and predicting exacerbations. Aside from asthma, they have also been proposed in the management of patients with chronic obstructive pulmonary disease (COPD), cystic fibrosis, allergic rhinitis, and primary ciliary dyskinesia.

Regulatory Status

In 2003, the U.S. Food and Drug Administration (FDA) cleared for marketing the Nitric Oxide Monitoring System (NIOX) (Aerocrine; Sweden) with the following indication: “[Measurements of the fractional nitric oxide (NO) concentration in expired breath (FE-NO)] provide the physician with means of evaluating an asthma patient’s response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments in asthma. NIOX should only be used by trained physicians, nurses and laboratory technicians. NIOX cannot be used with infants or by children approximately under the age of four, as measurement requires patient cooperation. NIOX should not be used in critical care, emergency care or in anesthesiology.” In March 2008, the NIOX MINO was cleared for marketing. The main differences between this new device and the NIOX are that the NIOX MINO is hand-held and portable and that it is not suitable for children under age seven years.

The RTube Exhaled Breath Condensate collection system (Respiratory Research, Inc.) and the ECoScreen EBC collection system (CareFusion, Germany) are registered with the FDA as Class I devices that collect expired gas. Respiratory Research has a proprietary gas-standardized pH assay, which, when performed by the company, is considered a laboratory-developed test.

Policy (Formerly Corporate Medical Guideline)

Measurement of exhaled nitric oxide is considered investigational in the diagnosis and management of asthma and other respiratory disorders including but not limited to chronic obstructive pulmonary disease and chronic cough.

Measurement of exhaled breath condensate is considered investigational in the diagnosis and management of asthma and other respiratory disorders including but not limited to chronic obstructive pulmonary disease and chronic cough.

Benefit Application

Because this service is not proven of benefit, and if provided it adds little time or complexity to the encounter, it will be considered incidental to other medically necessary services being provided at the encounter.
Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this Protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

12. Schneider A, Tilemann L, Schermer T et al. Diagnosing asthma in general practice with portable exhaled nitric oxide measurement--results of a prospective diagnostic study: FENO < or = 16 ppb better than FENO < or = 12 ppb to rule out mild and moderate to severe asthma [added]. Respir Res 2009; 10:15.

18. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Exhaled nitric oxide monitoring as a guide to treatment decisions in chronic asthma. TEC Assessments 2005; Volume 20, Tab 17.

