Autologous Platelet-Derived Growth Factors as a Treatment of Wound Healing and Other Conditions

(2016)

Medical Benefit | Effective Date: 07/01/13 | Next Review Date: 05/15
Preauthorization | No | Review Dates: 09/10, 07/11, 07/12, 05/13, 05/14

The following Protocol contains medical necessity criteria that apply for this service. It is applicable to Medicare Advantage products unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. **Preauthorization is not required but is recommended if, despite this Protocol position, you feel this service is medically necessary.** Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

Description

This Protocol addresses the use of blood-derived growth factors, specifically autologous platelet-derived growth factors and platelet-rich plasma (PRP), as a treatment of wounds or other musculoskeletal conditions, including but not limited to adjunctive use in surgical procedures and treatment of diabetic ulcers, ulcers related to venous stasis, lateral epicondylitis (i.e., tennis elbow), plantar fasciitis, or Dupuytren’s contracture.

Background

A variety of growth factors have been found to play a role in wound healing, including platelet-derived growth factors (PDGF), epidermal growth factor, fibroblast growth factors, transforming growth factors, and insulin-like growth factors. Autologous platelets are a rich source of PDGF, transforming growth factors (that function as a mitogen for fibroblasts, smooth muscle cells, and osteoblasts), and vascular endothelial growth factors. Recombinant PDGF has also been extensively investigated for clinical use in wound healing.

Autologous platelet concentrate suspended in plasma, also known as platelet-rich plasma (PRP), can be prepared from samples of centrifuged autologous blood. Exposure to a solution of thrombin and calcium chloride degranulates platelets, releasing the various growth factors and results in the polymerization of fibrin from fibrinogen, creating a platelet gel. The platelet gel can then be applied to wounds or may be used as an adjunct to surgery to promote hemostasis and accelerate healing. In the operating room setting, PRP has been investigated as an adjunct to a variety of periodontal, reconstructive, and orthopedic procedures. For example, bone morphogenetic proteins are a type of transforming growth factors, and thus PRP has been used in conjunction with bone-replacement grafting (using either autologous grafts or bovine-derived xenograft) in periodontal and maxillofacial surgeries. Alternatively, PRP may be injected directly into the tissue. PRP has also been proposed as a primary treatment of miscellaneous conditions, such as epicondylitis, plantar fasciitis, and Dupuytren’s contracture. Injection of PRP for tendon and ligament pain is theoretically related to prolotherapy. However, prolotherapy involves injection of chemical irritants that are intended to stimulate inflammatory responses and induce release of endogenous growth factors.

PRP is distinguished from fibrin glues or sealants, which have been used for many years as a surgical adjunct to promote local hemostasis at incision sites. Fibrin glue is created from platelet-poor plasma and consists primarily of fibrinogen. Commercial fibrin glues are created from pooled homologous human donors; Tisseel® (Baxter) and Hemaseel® are examples of commercially available fibrin sealants. Autologous fibrin sealants can be created from platelet-poor plasma. This Protocol does not address the use of fibrin sealants.
Regulatory Status

A number of commercially available centrifugation devices are used for the preparation of platelet-rich plasma. For example, AutoloGel™ (Cytomedix) and SafeBlood® (SafeBlood Technologies) are two related but distinct autologous blood-derived preparations that can be prepared at the bedside for immediate application. Both AutoloGel and SafeBlood have been specifically marketed for wound healing. Other devices may be used in the operating room setting, such as Medtronic Electromedic, Elmd-500 Autotransfusion system, the Plasma Saver device, or the Smart PreP device. The Magellan Autologous Platelet Separator System (Medtronic) includes a disposables kit designed for use with the Magellan Autologous Platelet Separator portable tabletop centrifuge. BioMet Biologics received marketing clearance through the FDA’s 510(k) process for a gravitational platelet separation system (GPS®II), which uses a disposable separation tube for centrifugation and a dual cannula tip to mix the platelets and thrombin at the surgical site. Filtration or plasmapheresis may also be used to produce platelet-rich concentrates. The use of different devices and procedures can lead to variable concentrations of active platelets and associated proteins, increasing variability between studies of clinical efficacy.

Related Protocols

Prolotherapy
Bone Morphogenetic Protein

Policy (Formerly Corporate Medical Guideline)

Use of autologous blood-derived preparations (i.e., platelet-rich plasma) is considered investigational. This includes, but is not limited to, use in the following situations:

- Treatment of acute or chronic wounds including non-healing ulcers
- Adjunctive use in surgical procedures
- Primary use (injection) for other conditions such as epicondylitis (i.e., tennis elbow), plantar fasciitis, or Dupuytren’s contracture.

Medicare Advantage

For Medicare Advantage members there may be potential for benefit under a Clinical Trial. Services are billed to original Medicare Fee-for-Service for Clinical Trials.

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this Protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.
References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

1. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Becaplermin for wound healing. TEC Assessments 1999; Volume 14, Tab 5.

46. CMS National Coverage Determination (NCD) for Blood-Derived Products for Chronic Non-Healing Wounds (270.3), Implementation Date 7/1/2013.