Cigna Medical Coverage Policy

Subject: Mechanical Devices for the Treatment of Back Pain

Effective Date: 8/15/2014
Next Review Date: 8/15/2015
Coverage Policy Number: 0140

Table of Contents
Coverage Policy .. 1
General Background ... 1
Coding/Billing Information 7
References .. 8

Hyperlink to Related Coverage Policies
Chiropractic Care
Complementary and Alternative Medicine
Electrical Stimulation Therapy and Devices
Home Traction Devices: Cervical and Lumbar
Physical Therapy
Spinal Orthoses

INSTRUCTIONS FOR USE
The following Coverage Policy applies to health benefit plans administered by Cigna companies. Coverage Policies are intended to provide guidance in interpreting certain standard Cigna benefit plans. Please note, the terms of a customer’s particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer’s benefit plan document may contain a specific exclusion related to a topic addressed in a Coverage Policy. In the event of a conflict, a customer’s benefit plan document always supersedes the information in the Coverage Policies. In the absence of a controlling federal or state coverage mandate, benefits are ultimately determined by the terms of the applicable benefit plan document. Coverage determinations in each specific instance require consideration of 1) the terms of the applicable benefit plan document in effect on the date of service; 2) any applicable laws/regulations; 3) any relevant collateral source materials including Coverage Policies and; 4) the specific facts of the particular situation. Coverage Policies relate exclusively to the administration of health benefit plans. Coverage Policies are not recommendations for treatment and should never be used as treatment guidelines. In certain markets, delegated vendor guidelines may be used to support medical necessity and other coverage determinations. Proprietary information of Cigna. Copyright ©2014 Cigna

Coverage Policy

Exercise equipment is specifically excluded under many benefit plans.

Cigna does not cover the use of any of the following mechanical devices, because each is considered experimental, investigational, or unproven for the treatment of any condition (this list may not be all-inclusive):

- quantitative muscle testing and treatment devices (e.g., MedX, Isostation B-200, Cybex, Kin-Com, and Biodex)
- vertebral axial decompression therapy and devices (e.g., VAX-D, DRX, DRX2000, DRX3000, DRX5000, DRX9000, DRS, Dynapro™ DX2, Accu-SPINA™ System, IDD Therapy® [Intervertebral Differential Dynamics Therapy], Tru Tac 401, Lordex Power Traction device, Spinex LDM)
- patient-operated spinal unloading devices (e.g., LTX 3000™, Orthotrac™ Pneumatic Vest, Posture Pump Elliptical Back Rocker)

General Background

Back pain may originate from the vertebrae, intervertebral discs, spinal cord, nerve roots, facet joints, ligaments, muscles, and sacroiliac, atlanto-axial, and atlanto-occipital joints. Most back pain will resolve spontaneously or can be treated with conservative and noninvasive therapies, such as analgesics, anti-inflammatory drugs, muscle relaxants, exercise, physical therapy, immobilization and trigger-point injections with local anesthetics.
Other nonsurgical methods of treatment include the use of traction, chiropractic care with spinal manipulation, transcutaneous electrical stimulators, spinal orthotic devices, acupuncture, and thermal techniques. Surgery may be required for the conditions with underlying pathology as determined by radiological findings.

Various noninvasive treatments have been proposed for use as treatment of low back pain, including quantitative muscle testing and treatment devices, isokinetic testing and treatment devices, internal disc decompression devices, vertebral axial decompression devices (e.g., vertebral axial decompression [VAX-D] devices), and patient-operated spinal unloading devices (e.g., LTX 3000™, Orthotrac™ Pneumatic Vest). Most of these devices require special training of the clinician and, in some cases, certification, and are generally used by physical therapists as part of rehabilitation programs and are not typically used in a home setting.

U.S. Food and Drug Administration (FDA)

Classification of devices by the FDA proposed for the treatment of back pain varies. Some have received approval through the FDA as isokinetic testing and evaluation systems (e.g., Isostation, Cybex Systems, KinCom, Biodex Systems) and others as powered/mechanical traction devices (e.g., VAX-D, DRS, Accu-Spina System). According to the FDA, an isokinetic testing and evaluation system is a rehabilitative exercise device intended for medical purposes, such as to measure, evaluate, and increase the strength of muscles and the range of motion of joints. Powered traction devices consist of powered devices intended for medical purposes for use in conjunction with traction accessories, such as belts and harnesses, to exert therapeutic pulling forces on the person’s body. These devices are regulated by the FDA as Class II devices.

The MEDX Lumbar Extension machine received approval from the FDA as an exerciser, measuring (i.e., exercise measuring equipment) and is also regulated as a Class II device.

Both the LTX 3000 and the Orthotrac Pneumatic Vest are considered Class I devices, further classified as nonpowered traction apparatus, and are subject to the lowest level of regulatory control by the FDA. These types of devices present minimal potential harm to the user and are simple in design.

Quantitative Muscle Testing Devices

Quantitative muscle testing devices have been used to quantify muscle strength and an individual’s response to rehabilitation and therapy. Manual muscle testing is most commonly performed and is used to identify differences in strength between muscles, using qualitative grading to describe the strength of muscles. Newer computerized technologies have been proposed to quantify muscle strength, and some authors have reported that quantifying muscle activity and strength may prove useful in the diagnosis and management of individuals with low back pain. The MedX extension machine (MEDX Corp, Ocala, FL) and Isostation B200 (Isotechnologies, Inc., Hillsborough, NC) are two devices that have been designed for muscle testing, and to improve spinal muscle strength through pelvic stabilization and isolation of specific groups of lumbar muscles. However, evidence in the peer-reviewed scientific literature does not show that use of these devices for muscle testing demonstrates better diagnostic utility than the established method of manual muscle testing.

MedX: The MedX lumbar/cervical extension machine is a device that can provide both functional muscle testing of the spine and spinal therapy. It provides resistance over a full range of isolated lumbar motion (72 degrees) or over a preselected limited range. The machine is capable of setting isometric test points every three degrees within an individual's range of motion. During the test, a computer software system plots the individual’s actual range of motion and strength in comparison to that of age- and gender-matched norms. In exercise mode, the compound weight stack can provide resistance from 10–400 foot pounds in increments of one foot pound. It is proposed that use of this device can specifically test the strength of the lumbar spine and, through rehabilitation, the device can strengthen muscles. The rehabilitation program typically lasts 12 weeks, with computerized strength and motion testing performed every four weeks.

Isostation B-200: The Isostation B-200 lumbar dynamometer is a device that can measure position, torque and velocity. It allows measurement of increasing fatigue by measuring the reduction speed in performance and noting increasing motion as muscle substitution becomes necessary. The device has been recommended for use in the treatment of persons with low back pain.

Isokinetic Testing Devices: Other types of quantitative muscle testing and strengthening devices, referred to as isokinetic testing devices, measure muscle strength by applying a constant resistance over a range of motion and speed. Based on testing results, strengthening exercises may be recommended. Isokinetic exercise is
exercise performed using a specialized apparatus that controls the speed of contraction within the range of motion. The exercise device provides variable resistance to movement, but allows movement at a constant speed. The device registers the force applied to it by the user, and offers the same amount of force as resistance. Cybex, Kin-Com, and Biodex are machines that provide isokinetic testing and muscle strengthening exercise. Evidence in the published scientific literature was not found demonstrating the utility of these specific devices for muscle testing or strengthening therapy.

Literature Review: There is limited evidence in the published peer-reviewed scientific literature evaluating the use of quantitative muscle testing devices. These devices have not been shown to be equally effective as other standard exercise equipment utilized in rehabilitation programs, nor is there sufficient evidence to suggest that use of quantitative muscle testing devices improves clinical health outcomes when compared to standard manual muscle testing.

A randomized controlled trial was conducted by Choi et al. (2005) to assess the effects of a lumbar extension muscle strengthening program used on individuals who underwent lumbar microdiscectomy or percutaneous endoscopic discectomy. A total of 75 individuals were randomized into a control group (n=40) or an exercise group (n=35). Six weeks after surgery, the exercise group underwent a 12-week lumbar extension exercise program using the MedX lumbar extension machine. All individuals completed the visual analog scale and Oswestry disability index to evaluate pain and disability. Return to work data was also evaluated. The authors noted significant improvements in the exercise group versus the control group when assessing lumbar extensor power (51.67% versus 17.55%, respectively; p<0.05), the cross-sectional area of multifidus and longissimus muscle (29.23% versus 7.2%, respectively; p<0.05), and the visual analog scale score (2.51 versus 4.30, respectively; p<0.05). The number of people who returned to work four months after surgery was also higher in the exercise group, although not statistically significant (p>0.05). Additionally, the Oswestry disability index scores were better in the exercise group compared to the control group (24.6 versus 30.6, respectively). The difference in pain status between groups was comparable at the end of one year. Long-term effects of the exercise program were not evaluated.

A technology assessment was conducted by the Washington State Department of Labor and Industries (2003) evaluating the effectiveness of MedX in strengthening lumbar extensor muscles and for treating low back pain. The authors concluded that the evidence they reviewed suggested MedX may help to increase lumbar strength, although the studies do not clearly show MedX’s efficacy over other conventional exercise programs.

Vertebral Axial Decompression Therapy and Devices

Vertebral axial decompression therapy, also referred to as mechanized spinal distraction therapy, has been proposed as a nonsurgical treatment for back pain. Vertebral axial decompression is based on a theory that decreased load bearing (i.e., unloading) at the affected site will decrease pain and promote healing. These devices utilize computer-controlled mechanical tables to apply distractive tension, or stretching, along the spinal axis. Vertebral axial decompression devices are typically used in a clinic or rehabilitation setting and include the VAX-D (VAX-D Medical Technologies LLC, Oldsmar, FL), DRS system (Professional Distribution Systems, Inc., Boca Raton, FL), DRX2000 (Axiom Worldwide, Inc., Tampa, FL) and other FDA-approved devices.

VAX-D: Manufacturers suggest that use of the VAX-D table applies distractive forces in a gradual, progressive fashion through extension of the lower end of the table. The level of tension is preset on a control panel and can be increased, allowing for various decompression phases and a rest phase. Various decompression phases allow alternating cycles of distraction and relaxation. Typically, a treatment cycle consists of 15 cycles of tension and relaxation. The person lies prone on the VAX-D table. The table is split, allowing the table to slowly extend, thus decreasing load bearing in the intervertebral discs and/or intervertebral joint spaces.

Decompression Reduction Stabilization System (DRS): The DRS System has been recommended for treatment of low back pain. This device uses a bed that is split into two cushions. The DRS has a stand-on/stand-off tilt type design. The individual can step onto a foot pad, have a pelvic and chest harness attached, after which the individual and bed are lowered to a horizontal position. Distraction tension is applied by the pelvic harness while the individual’s upper body is secured to the locked upper cushion via the chest harness.

DRX2000™: It is suggested that DRX2000 is designed to relieve pressure on the anatomical structures that cause lower back pain. It is intended for use in the treatment of pain and disabling low back conditions caused by disc herniation, degenerative disc disease, sciatica, and posterior facet syndrome. Each treatment session
begins with a physician-prescribed treatment period and is designed to provide static, intermittent and cycling distraction forces to relieve pressures. It is a stand-on/stand-off tilt type bed split into two cushions. Distraction tensions are applied to an individual via a pelvic harness while the upper body is locked to the upper cushion via a chest harness.

Accu-Spina System™

Internal disc decompression therapy using the Accu-Spina System™ (Spina Therapeutics™, Waldorf, MD) is a noninvasive method of treatment proposed for chronic neck or back pain. According to the manufacturer, the device is the only device certified to administer IDD Therapy® (Intervertebral Differential Dynamics Therapy). IDD therapy is a computer-directed type of physical therapy regimen which theoretically works to create negative intradiscal pressure, retraction of herniation and to promote natural healing of the damaged area. Each treatment consists of a physician-prescribed treatment on the Spina System™ and is designed to provide static, intermittent, and cyclic distraction forces to relieve pressures on structures that may be causing back pain. Individuals are fitted with pelvic and torso harnesses, placed on a platform where they are reclined to a supine position; the harnesses are connected to a table and the Intelli-Decompression™ head, which is elevated 10 to 25 degrees above the individual. The system is programmed for intervals of 60 seconds decompression followed by 30 seconds of partial relaxation. Treatment sessions generally include 20 twenty-five minute treatments provided over a six-week period.

Other FDA-approved powered traction devices include the following (this list may not be all-inclusive):

- DRX3000, 5000, 9000
- Dynatron® DX2™ Combination Traction Unit and Infrared Therapy
- Lordex Power Traction Equipment
- Spinerx LDM
- Tru Tac 401 (Henley International)

Literature Review: The published scientific data is insufficient to validate improved clinical outcomes (e.g., reduction of back pain, improved functioning) associated with vertebral axial decompression therapy. While several technology assessments have been published, effectiveness of the various devices have not been proven when compared to standard equipment or testing.

Apfel et al. (2010) conducted a retrospective cohort study of adults with chronic LBP attributed to disc herniation and/or discogenic low back pain (LBP) who underwent a six-week treatment protocol of motorized non-surgical spinal decompression via the DRX9000. The main outcomes were changes in pain as measured on a verbal rating scale from 0—10 during a flexion-extension range of motion evaluation and changes in disc height as measured on CT scans. Paired t-test or linear regression was used as appropriate with p<0.05 considered to be statistically significant. The authors identified 30 patients with lumbar disc herniation with an average age of 65 years, body mass index of 29 kg/m2, 21 females and 9 males, and an average duration of LBP of 12.5 weeks. During treatment, low back pain decreased from 6.2 (SD 2.2) to 1.6 (2.3, p<0.001) and disc height increased from 7.5 (1.7) mm to 8.8 (1.7) mm (p<0.001). Increase in disc height and reduction in pain were significantly correlated (r=0.36, p=0.044). Reported limitations of this study are no control group and small sample size. The authors reported that a randomized controlled trial is needed to confirm the efficacy and elucidate the mechanism of this treatment modality.

Schimmel et al. (2009) conducted a randomized sham-controlled trial of intervertebral axial decompression. Sixty subjects with chronic symptomatic lumbar disc degeneration or bulging disc with no radicular pain and no prior surgical treatment (dynamic stabilization, fusion, or disc replacement) were randomly assigned to a graded activity program with an Accu-SPINA device (20 traction sessions during six weeks, reaching >50% body weight), or to a graded activity program with a non-therapeutic level of traction (<10% body weight). In addition to traction, the device provided massage, heat, blue relaxing light, and music during the treatment sessions in both groups. Neither patients nor evaluators were informed about the intervention received until after the 14-week follow-up assessment, and intention-to-treat analysis was performed (93% of subjects completed follow-up). Both groups showed improvements in validated outcome measures (visual analog scores for back and leg pain, Oswestry Disability Index, and Short-Form 36), with no differences between the treatment groups. The authors reported that the added axial, intermittent, mechanical traction of IDD Therapy to a standard graded activity program has been shown not to be effective.
In a prospective case series study, Beattie et al. (2008) examined outcomes after administration of a prone lumbar traction protocol, using the VAX-D system. A total of 296 subjects with low back pain and evidence of a degenerative and/or herniated intervertebral disk at one or more levels of the lumbar spine were included in this study. Patients who were involved in litigation and those receiving workers’ compensation were excluded. Patients underwent an 8-week course of prone lumbar traction, using the VAX-D system, consisting of five 30-minute sessions a week for four weeks, followed by one 30-min session a week for four additional weeks. The numeric pain rating scale and the Roland-Morris Disability Questionnaire were completed at pre-intervention, discharge (within two weeks of the last visit), and at 30 days and 180 days after discharge. Intention-to-treat strategies were used to account for those subjects lost to follow-up. A total of 250 (84.4%) subjects completed the treatment protocol. On the 30-day follow-up, 247 (83.4%) subjects were available; on the 180-day follow-up, data were available for 241 (81.4%) subjects. These researchers noted significant improvements for all post-intervention outcome scores when compared with pre-intervention scores (p < 0.01). The authors noted that causal relationships between the outcomes and the intervention cannot be made. This study lacked a comparison group.

Daniel (2007) reported that there is very limited evidence in the scientific literature to support the effectiveness of non-surgical spinal decompression therapy. One randomized controlled trial, one clinical trial, one case series and seven other papers were available in the published literature for review by the author as part of an intended systematic review. Due to the limited evidence a systematic review was not done and each study was reviewed individually. The author noted many of the reviewed studies utilized the VAX-D unit. Furthermore, the intervention has not been compared to exercise, spinal manipulation, standard medical care or other less expensive conservative treatments and many better-researched treatment options are available to clinicians.

Macario and Pergolizzi (2006) conducted a systematic review of the literature to assess the efficacy of nonsurgical spinal decompression that is achieved with motorized traction for chronic discogenic low back pain. The authors reviewed data from 10 studies between 1975 and 2003. Seven were randomized controlled trials of motorized traction using various apparatus types, including split-tabletop, plain tabletop, and friction-free couch with weights. A total of 408 individuals received placebo, and 438 individuals received motorized spinal decompression. Follow-up averaged 28 weeks. None of the studies were blinded, and only three had description of the randomization method. Due to the quality of the studies, the authors could not conduct a meta-analysis; hence, a qualitative review was performed. Six of the seven randomized trials reported no difference with motorized spinal decompression, and one study reported reduced pain but not disability. In the author’s opinion, the efficacy of spinal decompression achieved with motorized traction for discogenic low back remains unproven.

In a randomized, controlled study, Sherry et al. (2001) reported on the efficacy and appropriateness of VAX-D therapy compared to transcutaneous electrical nerve stimulation (TENS) therapy as a control treatment or placebo in a group of 44 individuals with chronic low back pain of greater than three months’ duration. All subjects had confirmed disc protrusion or disc herniation. The VAX-D treatment group (n=19) had treatment five times a week for four weeks, then once weekly for four weeks. The TENS treatment group (n=21) had treatment 30 minutes daily for 20 days, then once weekly for four weeks. Non-narcotic pain relievers and anti-inflammatory medication were administered in all subjects as required. The outcomes were self-reported; a successful outcome was defined as a 50% reduction in pain using the Visual Pain Analogue Scale and an improvement in the level of functioning as rated by individually selected disability ratings. The authors reported a 0% (0/21 subjects) success rate in the TENS treatment group compared to a success rate of 64.8% (13/19 subjects) in the VAX-D treatment group immediately following the treatment session (p < 0.001). Follow-up at six months consisted only of the successful VAX-D cases (13/19), with a reported continued success in 70% (7/10) of the studied population (two individuals were lost to follow-up, and one suffered other injury). While the authors reported a positive short-term outcome, the study was limited by small sample size, self-reported outcome measures, and lack of blinding. Four individuals were excluded from the analysis because of study withdrawal or failure to meet inclusion criteria. No data were provided regarding procedure-related complications; therefore, no conclusion could be drawn regarding the safety of VAX-D.

In review of a single study of DRS therapy (Shealy, Borgmeyer, 1997), the authors reported on a comparison of DRS therapy to conventional traction for both ruptured lumbar discs and chronic facet arthrosis. The subjects (n=39) were randomized to DRS therapy (n=25) or conventional traction treatment groups (n=14). The authors concluded that, for individuals with ruptured intervertebral discs, the results were good to excellent for 86% of
persons treated with DRS, compared to good results in 55% of those treated with traction (none of this
treatment group had excellent results). For the facet arthrosis group, 75% of those treated with DRS had good
to excellent results, while 50% treated with traction had good to excellent results. The scale used to quantify
results in this study was not clearly defined, and the study consisted of small sample size lacking clearly defined
methods of randomization.

The Agency for Healthcare Research and Quality published an evidence report regarding decompression
therapy for the treatment of lumbosacral pain (Jurecki-Tiller, et al., 2007). Ten published articles in total were
reviewed. Upon conducting their review, the authors noted that the current evidence is too limited in quality and
quantity to allow for evidence based conclusion regarding efficacy of decompression therapy when compared to
other nonsurgical treatment options for back pain.

Patient-Operated Spinal Unloading Devices

Some spinal unloading devices may be operated by the individual in a home setting. Generally, the use of spinal unloading
devices is proposed as a method of treatment for persons with subacute or chronic low back pain and
who have failed either standard medical or surgical therapy.

LTX 3000™: The LTX 3000 (Spinal Designs International, Minneapolis, MN) is a gravity-dependent axial spinal
unloading device that consists of an adjustable seat strap and rib support pads that are used to stabilize the
upper body by engaging the lower portion of the rib cage. After adjusting rib support pads, the individual lowers
the seat strap to induce unloading of the spine. Theoretically, unloading occurs as a result of the downward
force provided by body mass. Proper training in adjustment and use of the device is required for safe use in the
home. The LTX 3000 is often used as part of rehabilitation programs, such as the Low Back Rehabilitation
Program, the ReSpond Program, and, more recently, the LIFEBACK™ Spine Programs. These programs are
proposed for those persons who have reached maximum therapeutic benefit of physical therapy or chiropractic
care and whose pain limits activities of exercise and/or work. According to the manufacturer, recommended use
of the device is 3–4 times a day for sessions of 10–15 minutes lasting 2–3 months.

Orthotrac™ Pneumatic Vest: The Orthotrac Pneumatic Vest (Orthofix, Inc., Huntersville, NC) is a custom-made
device intended to be worn 2–3 times a day for 30–60 minutes each session. It is a spinal decompression orthotic
device that is theoretically designed to offload and stabilize the lower back, using air pressure to provide
support. It is suggested that pneumatic lifters “unload” some of the weight from the patient’s lumbar spine. It is
proposed that when worn, the device applies a decompressive force to the spine, transferring the weight from
the upper torso to the hips, preventing compression and aggravation of the lower back. The amount of force on
the spine is controlled by the individual through a manual inflation device, with pressure prescribed to offload
approximately 50% of the person’s weight. The individual can deflate the device to reduce pressure at any time.
It is suggested that use of the device alleviates pain and improves function and quality of life.

Posture Pump Elliptical Back Rocker: The Posture Pump Elliptical Back Rocker (PMT Medical, Inc., Akron,
OH) uses a dual inflation mechanism that gradually lifts, stretches and separates the joints and is suggested to
relieve back stiffness and discomfort. The manufacturer suggests that two angled air cells create a multi-
vectored force that promotes disc and joint lubrication. The built-in rocking mechanism exercises the abdominal
muscles and is proposed to shape and stretch the lower back.

Literature Review: There are few published clinical trials evaluating the safety and efficacy of patient-operated
spinal unloading devices compared to other well-accepted pain treatment modalities for the treatment of back
pain. In a preliminary study, Dallolio (2005) reported on a case series of 41 subjects with radicular pain due to
degenerative discopathy. The individuals were treated with an Orthotrac pneumatic lumbar vest for 60 minutes,
three times a day, for five weeks. The authors reported, “Thirty-two subjects showed a significant subjective and
clinical improvement with subsequent better quality of life." All subjects reported a decrease or a disappearance
of radicular pain. The authors acknowledged the device seemed to be effective for spinal decompression;
however, further multicenter and interdisciplinary studies involving larger numbers of individuals are required to
confirm those results. The study was limited by lack of controls, lack of comparative treatments, short-term
outcomes, and a small study population.

Two published literature sources address the mechanical responses and safety of the LTX 3000 specifically.
Podein and Iaizzo (1998) studied lumbar unloading in 17 healthy subjects who had not experienced a significant
episode of low back pain within six months, using the LTX 3000. In this case series, the authors addressed the
safety of the device by measuring forces applied to the body and associated changes in physiological responses (e.g., heart rate, blood pressure, respiratory rate) during spinal unloading. The authors noted that the applied forces of spinal unloading did cause changes in physiological responses but that the changes were reversible, clinically unimportant and not contraindications to use of the device by the general population. Nonetheless, due to a small sample population and limited evaluation measures, strong conclusions regarding the safety and efficacy of the device cannot be made.

A case series conducted by Janke et al. (1997) evaluated the biomechanical effectiveness of the LTX 3000 Lumbar Rehabilitation System used on 14 healthy subjects who had not experienced a significant episode of back pain for six months. Outcome measures were the degree of lumbar lengthening and curvature reduction. Authors reported that their results indicated proper use of the LTX 3000 induced significant lumbar lengthening and curvature reduction in healthy subjects during treatment. However, this small case series did not provide data on those persons with back pain, nor did the study provide data on duration of effect on intervertebral disc spaces. Therefore, no conclusions can be drawn regarding biomechanical effect, relief of symptoms or improvement of function.

All other data reviewed were obtained from the device manufacturers. The literature lacks published clinical studies to support the safety and efficacy of spinal unloading devices for the treatment of back pain and specific patient-selection criteria have not been established. In addition, there is mixed evidence in the literature supporting the use of back braces and lumbar supports, in general, for the treatment of back pain. For example, a Cochrane systematic review concluded that there is still a need for high-quality randomized trials assessing the effectiveness of lumbar supports (Van Duijvenbode, et al., 2008).

Use Outside of the US
The Workers Compensation Board (WCB) of British Columbia, Evidence Based Practice Group (2005) conducted a systematic review of vertebral axial decompression for low back pain and concluded that there is no evidence that the VAX-D system is effective in treating chronic low back pain associated with herniated disc, degenerative disc, posterior facet syndrome, sciatica or radiculopathy. This systematic review was updated in 2012 with no change to the prior conclusion.

The Medical Services Advisory Committee (MSAC) of the Department of Health and Aging, Australia, conducted a technology assessment (2001) of vertebral axial decompression therapy for chronic back pain. There was insufficient evidence to support the safety and efficacy of vertebral axial decompression therapy.

Summary
Several noninvasive treatments for back pain, which include quantitative muscle testing and therapy, vertebral axial decompression, and patient-operated spinal unloading devices, have emerged; however, there are few well-designed controlled clinical trials available to support improved clinical outcomes when these treatments are compared to standard equipment used for rehabilitation and physical therapy. The few published studies have had methodological flaws, such as lack of blinding, self-reported outcomes, small populations, and short-term follow-up. There is insufficient evidence in the published, peer-reviewed scientific literature to demonstrate that any of these mechanical devices used for the treatment of back pain are as effective as or more effective than standard established methods of treatment.

Coding/Billing Information

Note: 1) This list of codes may not be all-inclusive.
 2) Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement.

Experimental/Investigational/Unproven/Not Covered when used to report quantitative muscle testing and treatment devices, vertebral axial decompression therapy devices, or patient-operated spinal unloading devices for the treatment of any condition.

(CPT code 64722 is included in the coding table because it has been inappropriately used to report VAX-D):
<table>
<thead>
<tr>
<th>CPT* Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>64722</td>
<td>Decompression; unspecified nerve(s) (specify)</td>
</tr>
<tr>
<td>95831</td>
<td>Muscle testing, manual (separate procedure) with report; extremity (excluding hand) or trunk</td>
</tr>
<tr>
<td>95851</td>
<td>Range of motion measurements and report (separate procedure); each extremity (excluding hand) or each trunk section (spine)</td>
</tr>
<tr>
<td>97012</td>
<td>Application of a modality to one or more areas; traction, mechanical</td>
</tr>
<tr>
<td>97039</td>
<td>Unlisted modality (specify type and time if constant attendance)</td>
</tr>
<tr>
<td>97110</td>
<td>Therapeutic procedure, 1 or more areas, each 15 minutes; therapeutic exercises to develop strength and endurance, range of motion and flexibility</td>
</tr>
<tr>
<td>97112</td>
<td>Therapeutic procedure, 1 or more areas, each 15 minutes; neuromuscular reeducation of movement, balance, coordination, kinesthetic sense, posture, and/or proprioception for sitting and/or standing activities</td>
</tr>
<tr>
<td>97530</td>
<td>Therapeutic activities, direct (one-on-one) patient contact (use of dynamic activities to improve functional performance), each 15 minutes</td>
</tr>
<tr>
<td>97750</td>
<td>Physical performance test or measurement (eg, musculoskeletal, functional capacity), with written report, each 15 minutes</td>
</tr>
<tr>
<td>97799</td>
<td>Unlisted physical medicine/rehabilitation service or procedure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCPCS Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0830</td>
<td>Ambulatory traction device, all types, each</td>
</tr>
<tr>
<td>E0941</td>
<td>Gravity-assisted traction device, any type</td>
</tr>
<tr>
<td>E1399</td>
<td>Durable medical equipment, miscellaneous</td>
</tr>
<tr>
<td>L1499</td>
<td>Spinal orthosis, not otherwise specified</td>
</tr>
<tr>
<td>S9090</td>
<td>Vertebral axial decompression, per session</td>
</tr>
</tbody>
</table>

References

44. U.S. Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH); active. Device listing database. Product code ITH. Accessed July 1, 2014. Available at URL address: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?start_search=1&Panel=&ProductCode=ITH&KNumber=&K&Model=&&AppName=&&DeviceName=&&Type=&&ThirdPartyReviewed=off&ExpeditedReview=&&Decision=&&DecisionFromDate=&&DecisionToDate=&&IVDProducts=off&PAGENUM=100&SortColumn=KNumber

