I. POLICY

Dermatoscopy, using either direct inspection, digitization of images, or computer-assisted analysis, is considered investigational as a technique to evaluate or serially monitor pigmented skin lesions.

Computer-based optical imaging devices e.g., multispectral digital skin lesion analysis, are considered investigational as a technique to evaluate or serially monitor pigmented skin lesions.

Dermatoscopy and computer-based optical imaging devices are considered investigational for defining peripheral margins of skin lesions suspected of malignancy prior to surgical excision.

There is insufficient evidence to support a conclusion concerning the health outcomes or benefits associated with these procedures.

Cross-reference:
MP-5.014 Ultrasound Diagnostic; Skin, Spine and Musculoskeletal Indications

II. PRODUCT VARIATIONS

[N] = No product variation, policy applies as stated
[Y] = Standard product coverage varies from application of this policy, see below

[N] Capital Cares 4 Kids
[N] PPO
[N] HMO
[N] SeniorBlue PPO
[N] SeniorBlue HMO

[N] Indemnity
[N] SpecialCare
[N] POS

[Y] FEP PPO*

*Refer to FEP Medical Policy Manual MP-2.01.42 Optical Diagnostic Devices for Evaluating Skin Lesions Suspected of Malignancy. The FEP Medical Policy manual can be found at: www.fepblue.org
III. DESCRIPTION/BACKGROUND

There is interest in noninvasive devices that will improve the diagnosis of malignant skin lesions. One technique is dermatoscopy (dermoscopy, epiluminescence microscopy, in vivo cutaneous microscopy), which enables the clinician to perform direct microscopic examination of diagnostic features in pigmented skin lesions. Another approach is the use of computer-based light imaging systems. These techniques have the potential to improve diagnostic accuracy for suspicious skin lesions and may increase the detection rate of malignant skin lesions and/or reduce the rate of unnecessary biopsies.

Dermatoscopy:

Dermatoscopy, also known as dermoscopy, describes a family of noninvasive techniques that allow in vivo microscopic examination of skin lesions, and is intended to help distinguish between benign and malignant pigmented skin lesions. The technique involves application of immersion oil to the skin, which eliminates light reflection from the skin surface and renders the stratum corneum transparent. Using a magnifying lens, the structures of the epidermis and epidermal-dermal junction can then be visualized. A handheld or stereomicroscope may be used for direct visual examination. Digitization of images, typically after initial visual assessment, permits storage and facilitates their retrieval, often used for comparison purposes if a lesion is being followed up over time.

A variety of dermatoscopic features have been identified that are suggestive of malignancy, including pseudopods, radial streaming, the pattern of the pigment network, and black dots. These features in combination with other standard assessment criteria of pigmented lesions, such as asymmetry, borders, and color, have been organized into algorithms to enhance the differential diagnosis of pigmented skin lesions. Dermatoscopic images may be assessed by direct visual examination or by review of standard or digitized photographs. Digitization of images, either surface or dermatoscopic images, may permit qualitative image enhancement for better visual perception and discrimination of certain features, or actual computer-assisted diagnosis.

Dermatoscopy is also proposed in the serial assessment of lesions over time and for defining peripheral margins prior to surgical excision of skin tumors.

Computer-based optical diagnostic devices

A U.S. Food and Drug Administration (FDA)-approved multispectral digital skin lesion analysis (MSDSLA) device uses a handheld scanner to shine visible light on the suspicious lesion. The light is of 10 wavelengths, varying from blue (430 nm) and near infrared (950 nm). The light can penetrate up to 2.5 mm under the surface of the skin. The data acquired by the scanner are analyzed by a data processor; the characteristics of each lesion are evaluated using proprietary computer algorithms. Lesions are classified as positive (i.e., high degree of
morphologic disorganization) or negative (i.e., low degree of morphologic disorganization) according to the algorithms. Positive lesions are recommended for biopsy. For negative lesions, other clinical factors are considered in the decision of whether or not to refer to biopsy. The FDA-approved system is intended only for suspicious pigmented lesions on intact skin and for use only by trained dermatologists.

Regulatory Status

Dermatoscopic devices cleared by the U.S. Food and Drug Administration (FDA) include:

- **Episcope™** (Welch Allyn, Inc., Skaneateles Falls, NY) approved in 1995, intended use is to illuminate body surfaces and cavities during medical examination.
- **Nevoscope™** (TRANSLITE, Sugar Land, TX) approved in 1996, intended use is to view skin lesions by either illumination or transillumination.
- **Dermascope™** (American Diagnostic Corp., Hauppauge, NY) approved in 1999, intended use is to enlarge images for medical purposes.
- **MoleMax™** (Derma Instruments, Austria) approved in 1999, intended use is to enlarge images for medical purposes.

One computer-based optical imaging device has been cleared by the FDA:

MelaFind (MelaSciences, Inc. Irvington, NY) was approved in November 2011. Its intended use is to evaluate pigmented lesions with clinical or histological characteristics suggestive of melanoma. It is not intended for lesions with a diagnosis of melanoma or likely melanoma. MelaFind is intended for use only by physicians trained in the clinical diagnosis and management of skin cancer (i.e., dermatologists) and only those who have additionally successfully completed training on the MelaFind device. FDA documents further note:

“MelaFind is indicated only for use on lesions with a diameter between 2 mm and 22 mm, lesions that are accessible by the MelaFind imager, lesions that are sufficiently pigmented (i.e., not for use on non-pigmented or skin-colored lesions), lesions that do not contain a scar or fibrosis consistent with previous trauma, lesions where the skin is intact (i.e., non-ulcerated or non-bleeding lesions), lesions greater than 1 cm away from the eye, lesions which do not contain foreign matter, and lesions not on special anatomic sites (i.e., not for use on acral, palmar, plantar, mucosal, or subungual areas). MelaFind is not designed to detect pigmented non-melanoma skin cancers, so the dermatologist should rely on clinical experience to diagnose such lesions.”
IV. RATIONALE

As with any diagnostic tool, assessment of dermatoscopy involves a determination of its sensitivity, specificity, and positive and negative predictive values in different populations compared to a gold standard and whether the results of the diagnostic tests are ultimately used to benefit health outcomes. The gold standard for evaluation of pigmented skin lesions is excision with histologic diagnosis, in which, depending on the skill of the pathologist, sensitivity and specificity are considered near 100%. The relevant health outcome is early diagnosis of a malignancy. Clinically, dermatoscopy is used in combination with clinical assessment, either based on direct visual inspection or review of photographs. Therefore, the diagnostic performance of dermatoscopy combined with clinical assessment must be compared with clinical assessment alone and then compared to the gold standard of histology. There are 4 general clinical situations in which dermatoscopy might be of benefit.

1. When patients present with a lesion with a low pretest possibility of malignancy, dermatoscopy could potentially be used to determine which lesions did not require excision, i.e., a deselection process. In this clinical situation, the negative predictive value of dermatoscopy is the most relevant diagnostic parameter.

2. Some patients may present with multiple suspicious pigmented skin lesions such that excision of all or even some of them is not possible. In this clinical situation, a determination must be made which of the lesions is most clinically suspicious and requires excision. In this setting, the positive predictive value of dermatoscopy is the most relevant diagnostic parameter.

3. Serial assessment of lesions over time, as a technique to prompt excision when a lesion changes shape or color, is commonly performed in patients with multiple pigmented lesions or for lesions in locations difficult to excise. Serial conventional and digital photography has been used for this purpose. Both the positive and negative predictive values of results are relevant.

4. Use in defining peripheral borders of basal cell or squamous cell cancers to guide surgery. If dermatoscopy combined with clinical assessment is more accurate than clinical assessment alone in defining tumor borders, then it might be possible to excise the tumor with a narrower margin, thus preserving a larger amount of normal skin.

Literature Review

This policy was originally created in 2001 and was updated regularly with searches of the MEDLINE database. The most recent literature search was performed for the period July 2011 through July 2012. Following is a summary of the key literature to date:
Dermatoscopy

Dermatoscopy for selecting or deselecting lesions for excision

Does dermatoscopy improve upon naked eye examination of lesions?

A variety of studies have reported on the diagnostic parameters of dermatoscopy criteria compared to clinical assessment with histologic examination serving as the gold standard. However, most studies are retrospective, and most compare clinical assessment only to dermatoscopy instead of the more clinically relevant comparison of clinical assessment alone compared with combined clinical and dermatoscopic assessment. In addition, the studies do not subcategorize lesions into varying levels of pretest probabilities. Moreover, there is a lack of consensus in the literature regarding the optimal dermatoscopic criteria for malignancy and the optimal method of using the criteria to assess malignancy. For example, dermatoscopic images may be evaluated qualitatively, with semiquantitative scoring according to algorithms, evaluated using statistical methods to assess risk of malignancy, or evaluated using artificial neural networks. Dermatoscopic criteria for malignant melanoma have undergone multiple modifications, with questions raised regarding their validity and reproducibility. (1-4) As recently as 2009, even in papers that advocate for the widespread use of dermatoscopy, the accuracy of algorithms developed to differentiate between various types of pigmented lesions has been questioned. (5) This variety of methods obviously complicates the evaluation of the data.

Another important issue is that the majority of the studies report on the performance of clinicians who have extensive experience with dermatoscopic imaging, and it is not clear whether these results can be duplicated in a community setting or what kind of formal training would be required. A 2010 article reiterates that the generalizability of study findings to the general practice setting is still not known. (6)

Several meta-analyses of studies on the diagnostic accuracy of dermatoscopy have been published; findings of recent meta-analyses are described below:

In a 2008 meta-analysis, Vestergaard et al. reviewed studies on the diagnostic accuracy of dermatoscopy for the diagnosis of melanoma compared with naked eye examination. (7) All of the studies were performed in an expert setting. Nine studies met the inclusion criteria; 2 were randomized controlled trials (RCTs); 7 used a cross-sectional design. The authors compared the diagnostic accuracy of dermatoscopy with naked eye examination using a reference test on consecutive patients with a defined clinical presentation. Hierarchical summary receiver operator curve (ROC) analysis was used to estimate the relative diagnostic accuracy for clinical examination with, and without, the use of dermatoscopy. The pooled relative diagnostic odds ratio (OR) for melanoma, for dermatoscopy compared with naked eye examination, was found to be 15.6 (range: 2.9–83.7); removal of 2 small outlier studies changed this to 9.0 (range: 1.5–54.6). The authors concluded that dermatoscopy is more accurate than naked eye examination for the diagnosis of cutaneous melanoma in suspicious skin lesions when performed in the clinical setting. The limitations of this meta-analysis
include variability across the studies in the following study characteristics: patient and lesion selections; naked eye criteria for melanoma; dermatoscopy criteria for melanoma; and follow-up.

A 2009 meta-analysis by Rajpara et al. reviewed studies on dermatoscopy using a handheld dermatoscope, as well as studies on digital dermatoscopy with computer-aided diagnosis (CAD). (8) (The latter technique was called artificial intelligence in the article). The studies could be prospective or retrospective, evaluated dermatoscopy performed by experts, and used histology of excised lesions as the reference standard. Studies were not required to compare dermatoscopy to naked eye examination; thus, the study was not able to compare the diagnostic accuracy of dermatoscopy or digital dermatoscopy with CAD to clinical examination. The investigators identified 30 studies; all but one, which was conducted in Iran, were studies from Europe. A total of 9,784 melanoma lesions were included in the review; of these, 8,045 were analyzed by dermatoscopy and 2,420 by computer-aided diagnosis. The investigators conducted pooled analyses of studies, grouping them by the type of algorithm used for diagnosis e.g., pattern analysis, ABCD rule, etc. The pooled sensitivity for dermatoscopy (30 analyses) was 0.88 (95% confidence interval [CI]: 0.87-0.89), and the pooled specificity was 0.86 (95% CI: 0.85-0.86). For digital dermatoscopy with CAD, the pooled sensitivity was (12 analyses) 0.91 (0.88-0.93), and the pooled specificity was 0.79 (95% CI: 0.77-0.81). The pooled specificity of the CAD diagnosis was significantly lower than the dermatoscopy analysis; pooled sensitivities did not differ significantly. There were no significant differences in overall diagnostic performance of different algorithms. The authors noted that, whereas dermatoscopy has been used by trained clinicians in a practice setting, computer-aided diagnosis has only been used in experimental settings using preselected lesions.

A representative review of recent clinical studies follows:

In 2000, Ascierto and colleagues reported on a series of 8,782 subjects with 15,719 skin lesions evaluated dermatoscopically. (9) Based on dermatoscopic assessment, the lesions were further classified from very low to very high risk for malignant melanoma. Excision was advised for all high-risk lesions. In medium- and low-risk lesions, excision was justified for “cosmetic or functional” reasons. The sensitivity and specificity of dermatoscopy were then compared to the histologic results of the 2,731 excised lesions. For very high- and high-risk lesions, the positive and negative predictive values of dermatoscopy were 86.4% and 96.6%, respectively. In the low-risk group, the positive and negative predictive values were 93.1% and 95.4%, respectively. This study did not compare the performance of dermatoscopy, alone or in combination with clinical assessment, to clinical assessment alone.

A 2007 study by Annessi et al. compared dermatoscopy using 3 algorithmic methods with clinical diagnosis in 198 consecutive atypical macular melanocytic lesions. (10) Compared against the gold standard of histopathologic diagnosis, dermatoscopy with pattern analysis and the ABCD method had similar sensitivity (85% vs. 84%, respectively). Specificity (79% vs. 75%, respectively) and positive predictive value (80% and 76%, respectively) were modestly
higher for pattern analysis. Results with the 7-point checklist were sensitivity of 78% and specificity of 65%.

In 2007, Langley et al. conducted a study to evaluate the diagnostic accuracy of confocal scanning laser microscopy (CSLM) compared to dermatoscopy in a prospective examination of benign and malignant melanocytic lesions. (11) Patients (n=125) with suspicious pigmented lesions were prospectively recruited to undergo a clinical, dermatoscopic and CSLM examination. All patients had lesions studied; 88 melanocytic nevi and 37 melanomas. Dermatoscopy had a sensitivity of 89.2%; specificity of 84.1%; positive predictive value of 70.2%; negative predictive value of 94.9%. CSLM was found to have a sensitivity of 97.3%; specificity of 83.0%; positive predictive value of 70.6%; negative predictive value of 98.6%. No melanomas were misidentified when both techniques were used together. The authors concluded that CSLM had a relatively higher sensitivity than dermatoscopy. However, they noted that, the specificity was similar with CSLM and dermatoscopy, suggesting that the 2 techniques are complementary.

In 2011, De Giorgi and colleagues in Italy randomly selected 8 dermatologists who had attended a basic dermatoscopy course 6 months previously; none had extensive experience using dermatoscopy. (12) Each dermatologist was asked to examine separately clinical images only and then a combination of clinical images and dermatoscopic images of 200 melanocytic skin lesions (mean diameter <8.00 mm). All lesions had been histopathologically reviewed by a pathologist. Clinical images had been obtained with a digital camera, and dermatoscopy pictures were obtained using a dermatoscope. The dermatologists were asked to determine whether or not they thought the sample was a melanoma lesion (yes/no). Histopathologic diagnosis was used as the gold standard. The mean sensitivity was significantly increased when the clinician reviewed dermatoscopic images in addition to clinical images; specificity did not significantly change. The mean sensitivity and specificity of melanoma diagnosis using clinical image examination alone was 71.2% and 80.2%, respectively, and using the combined examination was 84.1% and 80.2%, respectively. The authors pointed out, unlike actual clinical practice, dermatologists were not given information about the lesion history and were not able to examine other lesions from the same patient. In addition, while reviewing the dermatoscopy images, the dermatologists were also reviewing the clinical images for the second time.

Rosendahl and colleagues analyzed a consecutive series 463 pigmented lesions from a single center in Australia. (13) All lesions had been photographed and dermatoscopic images had been taken prior to excision. Histopathology was used as the diagnostic gold standard. Lesions were categorized as benign or malignant; the latter category consisted of melanomas, basal cell carcinomas, and squamous cell carcinomas. The process of analysis consisted of presenting 2 clinical images of each lesion (overview and close-up) to a blinded reviewer who then made a diagnosis. The reviewer was then shown the dermatoscopic image and asked to give another diagnosis. Histopathologically, 246 of 463 (53.1%) of the lesions were melanocytic, and a total of 138 (30%) lesions were malignant. The reviewer’s diagnosis
matched the histopathologic diagnosis in 320 (69.1%) of cases using clinical images alone and in 375 (80.1%) of cases using clinical images and dermatoscopic images. At a fixed specificity of 80%, the sensitivity was 70.5% without dermatoscopic images and 82.6% with dermatoscopic images. Receiver operating characteristic curve (AUC) analysis was also done to evaluate diagnostic accuracy. The AUC was significantly higher with dermatoscopy, 0.89, than without dermatoscopy, 0.83 (p<0.001). When melanocytic and non-melanocytic lesions were examined separately, the difference in the AUC with and without dermatoscopy was statistically significant only for the melanocytic lesions (0.91 and 0.84, respectively, p<0.001).

The generalizability of the results of the above studies may be limited in that clinical assessment consisted only of photographs of the lesions; other clinical information was not available. As stated in a recent review article, research studies may artificially inflate the sensitivity of dermatoscopy for several reasons, including that they generally compare dermatoscopy to naked eye evaluation of morphology, which does not reflect actual clinical assessment that also takes history and context, e.g., patient’s degree of sun damage, into consideration. (6)

Does dermatoscopy to aid in selection of lesions for excision lead to changes in patient management or improve the net health outcome compared to standard practice?

No prospective comparative studies were identified that compared patient management with and without dermatoscopy. One study that addressed the issue of whether dermatoscopy leads to improved patient management was the 2011 study by De Giorgi and colleagues, described above. (12) The study asked dermatologists to decide whether or not they would recommend excision of lesions based on clinical images only and based on a combination of clinical images and dermatoscopic images. Dermatologists were told to simulate their practice setting and to attempt to minimize the number of negative lesions. Sensitivity and specificity were calculated based on whether any melanoma lesions would remain unexcised, with histopathologic findings as the gold standard. The mean sensitivity and specificity of the decision to excise using clinical image examination alone was 94.1% and 36.1%, respectively, and using the combined examination was 98.6% and 31.5%, respectively. The sensitivity was significantly higher when dermatologic images were available in addition to clinical images, p<0.003.

Conclusions: Recent metaanalyses found that overall; the diagnostic accuracy of dermatoscopy was higher than clinical assessment/naked eye examination. However, definitive conclusions could not be drawn on the impact of dermatoscopy on health outcomes. There is a lack of controlled studies comparing patient management decisions and health outcomes with and without dermatoscopy. Most of the studies of diagnostic accuracy were not performed in the clinical setting but rather using photographs of lesions with and without dermatoscopy in the research setting. Increased accuracy of diagnosis in the research setting may not translate to changes in clinical decision making, such as the decision to perform a skin biopsy. In addition, most studies have been conducted outside the U.S and have included
clinicians with extensive experience in dermatoscopy, creating concerns for generalizability of the results.

Dermatoscopy for evaluation of multiple suspicious pigmented lesions

No studies were found that specifically addressed the issue of dermatoscopy with patients who have multiple suspicious pigmented lesions to determine which lesions are most clinically suspicious and therefore require excision.

Dermatoscopy for serial assessments of lesions

Does serial assessment of lesions using dermatoscopy result in improved patient management or improve the net health outcome compared to standard practice?

No prospective comparative studies were identified that compared outcomes after managing patients over time with and without dermatoscopy. One study, published in 2009 by Menzies and colleagues, compared an initial patient management decision with naked eye evaluation or dermatoscopy and then followed patients over time with short-term sequential digital dermatoscopy imaging (SDDI) (i.e., every 3 months). (14) The study was conducted in a general practice setting in Australia. Participating physicians were trained in the use of dermatoscopy with SDDI by means of a 2-hour workshop and online training. Seventy-four physicians completed the training, and 63 of these (85%) then assessed 374 lesions (median of 6 lesions per physician). Based on clinical assessment with the naked eye alone, all 374 lesions were assessed as requiring excision or referral. With dermatoscopy, lesions were triaged to 3 groups: 110 received immediate referral or excision, 192 were assigned to close follow-up with SDDI, and 72 were assigned to observation for change. The 192 SDDI lesions were re-evaluated 3 months later. At that time, 46 lesions were referred/excised, 6 were triaged to continue SDDI, and 140 were triaged to standard observation. At the third visit (a total of 6 months from the initial visit), referral/excision was recommended for 2 of the 6 SDDI lesions, and the other 4 returned to standard care. In addition, 5 of the lesions previously recommended for observation were triaged to referral/excision. Thus, in this group of 374 lesions that would all have been recommended for referral/excision with clinical examination alone, the combined dermatoscopy and SSDI intervention reduced the number of referrals/excisions by about half, to 163 (44%) of lesions. However, it is not known how many of the patients triaged to referral or excision would ultimately have had a biopsy.

Dermatoscopy for defining peripheral margins of cancerous skin lesions prior to surgery

Does dermatoscopy for defining peripheral margins improve the net health outcome compared to standard practice?

Several studies conducted in Italy have evaluated dermatoscopy used to define peripheral borders of skin tumors to guide surgical excision. All were non-randomized comparisons between clinical and dermatoscopic evaluation of suspected tumor margins. Most recently in 2012, Carducci and colleagues evaluated outcomes in 94 patients with a suspected clinical diagnosis of squamous cell carcinoma (SCC). (15) Prior to surgery, margins in 46 patients
were determined by clinical evaluation and margins in 48 patients were determined with digital dermatoscopy. A lateral margin of 4-6 mm was chosen for SCC not located on the scalp, ears, eyelids, nose, or lips. For lesions in those areas, margins of 6-10 mm were used. In the dermatoscopy group, clinical margins were first defined and outlined with a dermatographic pencil. Then, dermatoscopy was performed, and the margins were redefined if pictures found that the margins were too near the pencil line. Histologic analysis of specimens was the reference standard. In the clinical evaluation group, 8 of 46 (17%) specimens showed incomplete margin excision compared to 3 of 48 (6%) in the digital dermatoscopy group. The difference between groups was statistically significant, p=0.015. The study was not randomized; the clinical evaluation group included patients who were evaluated before the introduction of digital dermatoscopy in that medical center.

In 2011, the Carducci research group published a similar study in patients with a suspected diagnosis of basal cell carcinoma of the head or neck. (16) A total of 84 patients were included. Lesions were examined either clinically or with digital dermatoscopy to determine margins. Surgical excision was undertaken with a 3-mm surgical margin. Margin involvement was found in 8 of 40 (20%) histologic specimens excised after clinical evaluation and 3 of 44 (7%) specimens excised after dermatoscopic detection of margins; this difference was statistically significant, p<0.007. Seven of the 11 (64%) specimens found to have margin involvement were nodular basal cell carcinomas. Neither of the Carducci studies followed patients after surgical excision and reported health outcomes. Both of these studies used a digital Videocap dermatoscope which has not been cleared for use in the United States.

In 2010 by Caresana and Giardini that included 200 consecutive patients with basal cell carcinoma. (17) In the study, 2-mm excision margins were used. The margins were first marked using naked eye only, and then the borders were confirmed using dermatoscopy. (The type of device used in the study was not specified.) There was concordance in the peripheral margins drawn using the naked eye and dermatoscopy in 131 of 200 (66%) cases. In 69 cases, there was a larger margin with dermatoscopy, but this did not exceed 1 mm more than the clinical measurement in 55 (80%) of the 69 cases. According to histologic analysis, surgical excision using the 2-mm margin was found to be adequate in 197 of the 200 cases. After 10-30 months of follow-up, none of the 200 treated cases had signs or symptoms of recurrence. Because surgery was performed using the margins drawn with dermatoscopy in all cases, the study could not compare margins drawn using naked eye (clinical) assessment plus dermatoscopy to clinical assessment alone.

Conclusions: There are no randomized studies comparing margins drawn with and without the aid of dermatoscopy and limited information on health outcomes. The available published studies are all conducted outside of the United States. Two of 3 studies use devices not available in the U.S., and the third did not specify the device used. Thus, these comparative studies are limited by potential noncomparability of groups, and by limited generalizability.
Computer-based optical diagnostic device

Selecting or de-selecting lesions for excision

Does a computer-based optical diagnostic device improve upon naked eye examination of lesions?

One published prospective study was identified that evaluated the diagnostic performance of MelaFind, an FDA-approved computer-based optical diagnostic device. This industry-sponsored study was published in 2011 by Monheit and colleagues and included the data submitted to the U.S. Food and Drug Administration (FDA) in the application for approval of the device. (18) The study included patients with at least 1 pigmented lesion scheduled for first-time biopsy. Lesions were between 2 mm and 22 mm in diameter. The following were exclusion criteria: the anatomic site was not accessible to the device, the lesion was not intact (e.g., open sores, ulcers, or bleeding); the lesion was on a palmar, plantar, or mucosal surface or under nails; the lesion was in an area of visible scarring and the lesion contained tattoo ink, splinter or other foreign matter. In addition, lesions with a prebiopsy diagnosis of melanoma were excluded from the analysis. Histologic diagnosis was used as the reference standard.

A total of 1,393 patients with 1,831 lesions were enrolled in the study. Of the 1,831 lesions, 1,632 (90%) were eligible and evaluable. There were 165 lesions not evaluable by MelaFind due to reasons such as operator error and camera malfunction, and others were found to be ineligible postenrollment due to factors such as scarring. Histologic analysis determined that 127 of 1,632 lesions (7.8%) were melanoma. The sensitivity of MelaFind for recommending biopsy of melanomas was 98.2% (125 of 127 melanomas) with a 95% lower confidence interval (CI) bound of 95.6%. The average specificity (averaged over clinicians) of MelaFind for melanoma was 9.5%. The accuracy of clinician diagnosis was determined by randomly selecting 25 melanoma cases and matching them with 25 non-melanoma lesions. Clinicians were asked to classify the lesions into categories of melanoma, cannot rule out melanoma, or not melanoma. The specificity of clinician diagnosis, as determined by the proportion of melanomas among the total number of lesions recommended for biopsy, was 3.7%, which was significantly lower than the specificity for MelaFind (p=0.02).

Does analysis using a computer-based optical diagnostic device lead to changes in patient management or improve the net health outcome compared to standard practice?

One study was published that reported results of a simulation exercise with dermatologists attending an educational conference. (19) A total of 179 practicing dermatologists participated in the exercise. They were asked to evaluate lesions before and after receiving information from multispectral digital skin lesion analysis using the MelaFind device and respond to the question of whether they would biopsy the lesion. There were 24 lesions, 5 known to be melanomas and 19 non-melanoma pigmented lesions. Before information from the computer-based system, 13% of participants said they would biopsy all 5 of the lesions; this rose to 70% after evaluation by the MelaFind system. The authors reported that the average biopsy sensitivity for the 5 melanoma lesions was 69% prior to receiving information from MelaFind.
and 94% afterwards. In addition, the biopsy specificity was 54% before information from MelaFind and 40% afterwards. Exact numbers were not reported. Potential biases in this analysis include that this was a simulation exercise and may not reflect clinical practice and that the exercise occurred at a meeting where the sponsorship was likely obvious. In addition, along with the information from MelaFind, the participants were evaluating the lesion for the second time, and this additional re-look at the information might affect their biopsy recommendation. A stronger design would be to randomize clinicians to evaluate lesions with or without information from MelaFind and to compare the accuracy of each approach.

Computer-based optical imaging devices for serial assessments of lesions

No published studies were identified that addressed this topic.

Computer-based optical imaging devices for defining peripheral margins of cancerous skin lesions prior to surgery

No published studies were identified that addressed this topic.

Conclusions: Only one published study has evaluated the accuracy of a computer-based optical diagnostic device. The study found that MelaFind was able to correctly identify 125 of 127 melanomas among evaluable samples; 10% of samples were not evaluable. One simulation study with a number of potential biases evaluated the potential impact on MelaFind on patient management decisions. The evidence is insufficient for evaluating the added benefit of using computer-based optical devices compared to clinical examination for selecting suspicious lesions for excision. Moreover, there is insufficient evidence to draw conclusions about the effect of computer-based optical devices on patient management or health outcomes. No studies were identified that addressed the use of computer-based optical imaging for serial assessment of lesions or for defining peripheral margins of lesions prior to surgery.

Ongoing clinical trials

Does the Aid of MelaFind Affect Clinical Management Decisions (NCT01387581) (20): This study, sponsored by MELA Sciences, is randomly assigning board-certified dermatologists to recommend whether or not a skin lesion should be excised based on either: 1) clinical exam information and high-quality digital images for each lesion; or 2) clinical exam information, high-quality digital images, and MelaFind result for each lesion. Data collection for this study has been completed; results have not yet been posted or published.

VivaNet Study. A Multicenter Study of Confocal Reflectance Microscopy in Telemedicine (EUNET) (NCT01385943) (21): This is a multicenter European study that will include individuals with skin lesions considered suspicious for malignancy. Patients will have all of the following, on the same day (unless contraindicated): clinical photograph, dermatoscopic image, confocal reflectance microscopic image. In addition, they will undergo a tissue biopsy. Patients will return in 3 months for additional examination. The primary study outcome is the relative accuracy of the diagnostic methods.
In 2009, the International Dermoscopy Society began recruitment for a comparative study designed to identify features that are the most reproducible and diagnostically significant in the diagnosis of melanoma into a single dermatoscopic criteria algorithm. (22) Currently more than 8 different methods are recognized for dermatoscopic analysis of melanocytic lesions. The study will include 800 melanocytic lesions collected from 10 centers around the world. No expected completion date is available.

Summary

Although the literature regarding dermatoscopy is extensive, it is insufficient for determining whether use of the technique i.e., for selecting or deselecting lesions for excision, leads to improvements in patient management or improved health outcomes. In simulated exercises, the accuracy of dermatoscopy has been reported as superior to clinician examination, but there are no prospective studies that demonstrate improvements in actual clinical care. There is less evidence on computer-based optical diagnostic devices for selecting or deselecting lesions for excision. There is only one published study on diagnostic accuracy and no studies comparing patient management decisions and health outcomes with and without these devices. In addition, there is insufficient evidence on the impact of serial dermatoscopic monitoring on health outcomes compared to serial clinical monitoring and an absence of published studies evaluating computer-based optical devices for serial monitoring of lesions. Thus, dermatoscopy and computer-based optical diagnostic devices are considered investigational for evaluating pigmented skin lesions suspected of malignancy and for serially monitoring pigmented skin lesions.

There are insufficient data on the added value of using dermatoscopy for defining peripheral margins of basal cell carcinomas or squamous cell carcinomas to guide surgical excision using dermatoscopic devices available in the United States. Thus, this application of dermatoscopy is considered investigational. Due to the absence of evidence on computer-based optical devices for defining peripheral margins of lesions suspected of malignancy, the technology is considered investigational for this purpose.

Practice Guidelines and Position Statements

In July 2007, the International Dermoscopy Society (IDS) embarked on creating a consensus document for the standardization and recommended criteria necessary to be able to effectively convey dermatoscopic findings to consulting physicians and colleagues. (22) The final items included in the document are as follows: 1) pertinent personal and family history (recommended); 2) clinical description of the lesion (recommended); 3) the 2-step method of dermatoscopy differentiating melanocytic from nonmelanocytic tumors (recommended); 4) the use of standardized terms to describe structures (recommended); 5) the dermatoscopic algorithm used (optional); 6) information on the imaging equipment and magnification (recommended); 7) clinical and dermatoscopic images of the tumor (recommended); 8) a diagnosis or differential diagnosis (recommended); 9) decision concerning the management...
(recommended); 10) specific comments for the pathologist when excision and histopathologic examination are recommended (optional).

The National Comprehensive Cancer Network (NCCN) melanoma guideline does not mention dermatoscopy. Biopsy is recommended for suspicious pigmented lesions. (23)

V. DEFINITIONS

MELANOMA is a malignant tumor of melanocytes that often begins in a darkly pigmented mole and can metastasize widely.

NON-INVASIVE refers to a device or procedure that does not penetrate the skin or enter any orifice in the body.

STRATUM CORNEUM refers to the outermost horny layer of the epidermis.

VI. BENEFIT VARIATIONS

The existence of this medical policy does not mean that this service is a covered benefit under the member’s contract. Benefit determinations should be based in all cases on the applicable contract language. Medical policies do not constitute a description of benefits. A member’s individual or group customer benefits govern which services are covered, which are excluded, and which are subject to benefit limits and which require preauthorization. Members and providers should consult the member’s benefit information or contact Capital for benefit information.

VII. DISCLAIMER

Capital’s medical policies are developed to assist in administering a member’s benefits, do not constitute medical advice and are subject to change. Treating providers are solely responsible for medical advice and treatment of members. Members should discuss any medical policy related to their coverage or condition with their provider and consult their benefit information to determine if the service is covered. If there is a discrepancy between this medical policy and a member’s benefit information, the benefit information will govern. Capital considers the information contained in this medical policy to be proprietary and it may only be disseminated as permitted by law.
VIII. REFERENCES

digital dermoscopy imaging for the management of pigmented lesions in primary care: a
15. Carducci M, Bozzetti M, de Marco G et al. Preoperative margin detection by digital
dermoscopy in the traditional surgical excision of cutaneous squamous cell carcinomas. J
Dermatolog Treat 2012 [Epub ahead of print].
improves the performance of traditional surgical excision of basal cell carcinomas of the
digital skin lesion analysis device on decision to biopsy lesions clinically suggestive of
21. VivaNet Study: a multicenter study of confocal reflectance microscopy in telemedicine
Results of a consensus meeting of the International Dermoscopy Society. J Am Acad
oncology, V1. 2013. Available online at:
August, 2012.

Other

IX. CODING INFORMATION

Note: This list of codes may not be all-inclusive, and codes are subject to change at any time. The
identification of a code in this section does not denote coverage as coverage is determined by the
terms of member benefit information. In addition, not all covered services are eligible for
separate reimbursement.
Investigational and therefore not covered:

<table>
<thead>
<tr>
<th>CPT Codes®</th>
<th>96904</th>
<th>96999</th>
</tr>
</thead>
</table>

X. POLICY HISTORY

<table>
<thead>
<tr>
<th>MP 2.066</th>
<th>CAC 9/30/03</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAC 5/31/05</td>
</tr>
<tr>
<td></td>
<td>CAC 4/25/06</td>
</tr>
<tr>
<td></td>
<td>CAC 3/27/07</td>
</tr>
<tr>
<td></td>
<td>CAC 11/27/07</td>
</tr>
<tr>
<td></td>
<td>CAC 11/25/08</td>
</tr>
<tr>
<td></td>
<td>CAC 11/24/09 Consensus Review</td>
</tr>
<tr>
<td></td>
<td>CAC 11/30/10 Minor Revision Existing policy statement changed from not medically necessary to investigational. New policy statement added that dermatoscopy is investigational as a technique to define surgical margins in basal cell carcinomas.</td>
</tr>
<tr>
<td></td>
<td>CAC 8/28/12 Adopt BCBSA. No changes to policy criteria. FEP variation added. Codes reviewed 8/10/12 klr</td>
</tr>
</tbody>
</table>

| CAC 1/29/13 Minor revision. Computer-based optical imaging devices (e.g. multispectral digital skin lesion analysis) added as investigational. Statement regarding whole body photography removed. Policy title revised to Optical Diagnostic Devices for Evaluation Skin Lesions Suspected of Malignancy Codes reviewed 11/12/12 klr |

| CAC 1/28/14 Consensus review. References updated. No changes to the policy statements. Rationale added. |