I. POLICY

The use of dynamic spinal visualization is considered investigational. There is insufficient evidence to support a conclusion concerning the health outcomes or benefits associated with this procedure

Cross-reference:
MP-1.021 Image Guided Minimally Invasive Lumbar Decompression (IG-MLD) for Spinal Stenosis

II. PRODUCT VARIATIONS

[N] = No product variation, policy applies as stated
[Y] = Standard product coverage varies from application of this policy, see below

[N] Capital Cares 4 Kids [N] Indemnity
[N] PPO [N] SpecialCare
[N] HMO [N] POS
[N] SeniorBlue HMO [Y] FEP PPO*
[N] SeniorBlue PPO

*Refer to FEP Medical Policy Manual MP 6.01.46-Dynamic Spinal Visualization. The FEP Medical Policy manual can be found at: www.fepblue.org
III. DESCRIPTION/BACKGROUND

Dynamic spinal visualization is a general term addressing different imaging technologies, including digital motion x-ray and videofluoroscopy (also known as cineradiography) that allow the simultaneous visualization of movement of internal body structures such as the spine (vertebrae) with external body movement. These technologies have been proposed for the evaluation of spinal disorders including low back pain.

Most spinal visualization methods use x-rays to create images either on film, video monitor, or computer screen. Digital motion x-ray involves the use of either film x-ray or computer-based x-ray ‘snapshots’ taken in sequence as a patient moves. Film x-rays are digitized into a computer for manipulation, while computer-based x-rays are automatically created in a digital format. Using a computer program, the digitized snapshots are then put in order and played on a video monitor, creating a moving image of the inside of the body. This moving image can then be evaluated by a physician alone or by using a computer that evaluates several aspects of the body’s structure, such as intervertebral flexion and extension, to determine the presence or absence of abnormalities.

Videofluoroscopy and cineradiography are different names for the same procedure, which uses a technique called fluoroscopy to create real-time video images of internal structures of the body. Unlike standard x-rays, which take a single picture at one point in time, fluoroscopy provides motion pictures of the body. The results of these techniques can be displayed on a video monitor as the procedure is being conducted, as well as recorded, to allow computer analysis or evaluation at a later time. Like digital motion x-ray, the results can be evaluated by a physician alone or with the assistance of computer analysis software.

Dynamic magnetic resonance imaging (MRI) is also being developed for imaging of the cervical spine. This technique uses an MRI-compatible stepless motorized positioning device (NeuroSwing, Fresenius/Siemens) and a real-time true fast imaging with steady-state precession (FISP) sequence to provide passive kinematic imaging of the cervical spine. The quality of the images is lower than a typical MRI sequence, but is proposed to be adequate to observe changes in the alignment of vertebral bodies, the width of the spinal canal, and the spinal cord. Higher-resolution imaging can be performed at the end positions of flexion and extension.

Regulatory Status

The KineGraph VMA™ (Vertebral Motion Analyzer, Ortho Kinematics) received clearance for marketing through the U.S. Food and Drug Administration’s (FDA) 510(k) process in 2012. The system includes a Motion Normalizer™ for patient positioning, standard fluoroscopic imaging, and automated image recognition software. Processing of scans by Ortho Kinematics is charged separately.
Dynamic spinal visualization is a general term addressing different imaging technologies, including digital motion x-ray and videofluoroscopy (also known as cineradiography) that allow the simultaneous visualization of movement of internal body structures such as the spine (vertebrae) with external body movement. These technologies have been proposed for the evaluation of spinal disorders including low back pain.

Background

Most spinal visualization methods use x-rays to create images either on film, video monitor, or computer screen. Digital motion x-ray involves the use of either film x-ray or computer-based x-ray ‘snapshots’ taken in sequence as a patient moves. Film x-rays are digitized into a computer for manipulation, while computer-based x-rays are automatically created in a digital format. Using a computer program, the digitized snapshots are then put in order and played on a video monitor, creating a moving image of the inside of the body. This moving image can then be evaluated by a physician alone or by using a computer that evaluates several aspects of the body’s structure, such as intervertebral flexion and extension, to determine the presence or absence of abnormalities.

Videofluoroscopy and cineradiography are different names for the same procedure, which uses a technique called fluoroscopy to create real-time video images of internal structures of the body. Unlike standard x-rays, which take a single picture at one point in time, fluoroscopy provides motion pictures of the body. The results of these techniques can be displayed on a video monitor as the procedure is being conducted, as well as recorded, to allow computer analysis or evaluation at a later time. Like digital motion x-ray, the results can be evaluated by a physician alone or with the assistance of computer analysis software.

Dynamic magnetic resonance imaging (MRI) is also being developed for imaging of the cervical spine. This technique uses an MRI-compatible stepless motorized positioning device (NeuroSwing, Fresenius/Siemens) and a real-time true fast imaging with steady-state precession (FISP) sequence to provide passive kinematic imaging of the cervical spine. The quality of the images is lower than a typical MRI sequence, but is proposed to be adequate to observe changes in the alignment of vertebral bodies, the width of the spinal canal, and the spinal cord. Higher-resolution imaging can be performed at the end positions of flexion and extension.

Regulatory Status

The KineGraph VMA™ (Vertebral Motion Analyzer, Ortho Kinematics) received clearance for marketing through the U.S. Food and Drug Administration’s (FDA) 510(k) process in 2012. The system includes a Motion Normalizer™ for patient positioning, standard fluoroscopic imaging, and automated image recognition software. Processing of scans by Ortho Kinematics is charged separately.
V. DEFINITIONS

VI. BENEFIT VARIATIONS

The existence of this medical policy does not mean that this service is a covered benefit under the member's contract. Benefit determinations should be based in all cases on the applicable contract language. Medical policies do not constitute a description of benefits. A member’s individual or group customer benefits govern which services are covered, which are excluded, and which are subject to benefit limits and which require preauthorization. Members and providers should consult the member’s benefit information or contact Capital for benefit information.

VII. DISCLAIMER

Capital’s medical policies are developed to assist in administering a member’s benefits, do not constitute medical advice and are subject to change. Treating providers are solely responsible for medical advice and treatment of members. Members should discuss any medical policy related to their coverage or condition with their provider and consult their benefit information to determine if the service is covered. If there is a discrepancy between this medical policy and a member’s benefit information, the benefit information will govern. Capital considers the information contained in this medical policy to be proprietary and it may only be disseminated as permitted by law.

VIII. CODING INFORMATION

Note: This list of codes may not be all-inclusive, and codes are subject to change at any time. The identification of a code in this section does not denote coverage as coverage is determined by the terms of member benefit information. In addition, not all covered services are eligible for separate reimbursement.

Investigational/Not Covered/Not Medically Necessary:

<table>
<thead>
<tr>
<th>CPT Codes®</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>76120</td>
<td>76125</td>
</tr>
</tbody>
</table>

The following ICD-10 diagnosis codes will be effective October 1, 2014:

<table>
<thead>
<tr>
<th>ICD-10-CM Diagnosis Code*</th>
<th>Description</th>
</tr>
</thead>
</table>

*If applicable, please see Medicare LCD or NCD for additional covered diagnoses.

IX. REFERENCES

X. POLICY HISTORY

<table>
<thead>
<tr>
<th>Policy Number</th>
<th>Policy History</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP 5.051</td>
<td>CAC 3/26/13 New policy adopting BCBSA investigational policy statement. Previously silent. CPT codes added to policy-skb</td>
</tr>
<tr>
<td></td>
<td>CAC 1/28/14 Consensus. No change to policy statements. References updated. Rationale section added.</td>
</tr>
</tbody>
</table>

Health care benefit programs issued or administered by Capital BlueCross and/or its subsidiaries, Capital Advantage Insurance Company®, Capital Advantage Assurance Company® and Keystone Health Plan® Central. Independent licensees of the BlueCross BlueShield Association. Communications issued by Capital BlueCross in its capacity as administrator of programs and provider relations for all companies.