Title: Contrast-Enhanced Computed Tomography Angiography (CTA) for Coronary Artery Evaluation

See also: Computed Tomography to Detect Coronary Artery Calcification policy
CTA and MRA of the Chest (excluding the heart) policy
CTA and MRA of the Head, Neck, Abdomen, Pelvis, Lower Extremity, and Upper Extremity policy
Cardiac Computed Tomography (CT)

Professional
Original Effective Date: November 1, 2001
Revision Date(s): February 1, 2003; April 1, 2004; February 10, 2006; August 2, 2006; October 31, 2006; January 12, 2007; July 30, 2007; January 25, 2008; January 30, 2008; August 11, 2009; January 1, 2010; August 19, 2011; December 9, 2011; February 26, 2013; December 31, 2013
Current Effective Date: December 9, 2011

Institutional
Original Effective Date: June 3, 2004
Revision Date(s): February 10, 2006; August 2, 2006; October 31, 2006; January 12, 2007; July 30, 2007; January 25, 2008; January 30, 2008; August 11, 2009; January 1, 2010; August 19, 2011; December 9, 2011; February 26, 2013; December 31, 2013
Current Effective Date: December 9, 2011

State and Federal mandates and health plan member contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. To verify a member’s benefits, contact Blue Cross and Blue Shield of Kansas Customer Service.

The BCBSKS Medical Policies contained herein are for informational purposes and apply only to members who have health insurance through BCBSKS or who are covered by a self-insured group plan administered by BCBSKS. Medical Policy for FEP members is subject to FEP medical policy which may differ from BCBSKS Medical Policy.

The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents of Blue Cross and Blue Shield of Kansas and are solely responsible for diagnosis, treatment and medical advice.

If your patient is covered under a different Blue Cross and Blue Shield plan, please refer to the Medical Policies of that plan.
DESCRIPTION

Contrast-enhanced computed tomography angiography (CTA) is a noninvasive imaging test that requires the use of intravenously administered contrast material and high-resolution, high-speed CT machinery to obtain detailed volumetric images of blood vessels. It is a potential alternative to current diagnostic tests for cardiac ischemia, i.e., non-invasive stress testing and/or coronary angiography.

CTA can be applied to image blood vessels throughout the body; however, for the coronary arteries, several technical challenges must be overcome to obtain high-quality diagnostic images. First, very short image acquisition times are necessary to avoid blurring artifacts from the rapid motion of the beating heart. In some cases, premedication with beta-blocking agents is used to slow the heart rate below about 60–65 beats per minute to facilitate adequate scanning, and electrocardiographic triggering or gating (retrospective or prospective) is used to obtain images during diastole when motion is reduced. Second, rapid scanning is also helpful so that the volume of cardiac images can be obtained during breath-holding. Third, very thin sections (1 mm or less) are important to provide adequate spatial resolution and high-quality 3D reconstruction images.

Volumetric imaging permits multiplanar reconstruction of cross-sectional images to display the coronary arteries. Curved multiplanar reconstruction and thin-slab maximum intensity projections provide an overview of the coronary arteries, and volume-rendering techniques provide a 3D anatomical display of the exterior of the heart. Two different CT technologies can achieve high-speed CT imaging. Electron beam CT (EBCT, also known as ultrafast CT) uses an electron gun rather than a standard x-ray tube to generate x-rays, thus permitting very rapid scanning, on the order of 50–100 milliseconds per image. Helical CT scanning (also referred to as spiral CT scanning) also creates images at greater speed than conventional CT by continuously rotating a standard x-ray tube around the patient so that data are gathered in a continuous spiral or helix rather than individual slices. Helical CT is able to achieve scan times of 500 milliseconds or less per image, and use of partial ring scanning or post-processing algorithms may reduce the effective scan time even further.

Multidetector row helical CT (MDCT) or multislice CT scanning is a technological evolution of helical CT, which uses CT machines equipped with an array of multiple x-ray detectors that can simultaneously image multiple sections of the patient during a rapid volumetric image acquisition. MDCT machines currently in use have 64 or more detectors.

A variety of noninvasive tests are used in the diagnosis of coronary artery disease. They can be broadly classified as those that detect functional or hemodynamic consequences of obstruction and ischemia (exercise treadmill testing, myocardial perfusion imaging [MPI], stress echo with or without contrast), and others identifying the anatomic obstruction itself (coronary CTA and coronary magnetic resonance imaging) (1). Functional testing involves inducing ischemia by exercise or pharmacologic stress and detecting its consequences. However, not all patients are candidates. For example, obesity or obstructive lung disease can make obtaining echocardiographic images of sufficient quality difficult. Conversely, the presence of coronary calcifications can impede detecting coronary anatomy with coronary CTA. Accordingly, some tests will be unsuitable for particular patients.
Evaluation of obstructive coronary artery disease (CAD) involves quantifying arterial stenoses to determine whether significant narrowing is present. Lesions with greater than 50% to 70% diameter stenosis accompanied by symptoms are generally considered significant, and often result in revascularization procedures. It has been suggested that coronary CTA may be helpful to rule out the presence of CAD and to avoid invasive coronary angiography (ICA) in patients with a low clinical likelihood of significant CAD. Also of note is the interest in the potential importance role of non-obstructive plaques (i.e., those associated with less than 50% stenosis) because their presence is associated with increased cardiac event rates. (2) Coronary CTA can also visualize the presence and composition of these plaques and quantify the plaque burden better than conventional angiography, which only visualizes the vascular lumen. Plaque presence has been shown to have prognostic importance.

The information sought from angiography after coronary artery bypass graft surgery may depend on the length of time since surgery. Bypass graft occlusion may occur during the early postoperative period; whereas, over the long term, recurrence of obstructive CAD may occur in the bypass graft, which requires a similar evaluation as CAD in native vessels.

Congenital coronary arterial anomalies (i.e., abnormal origination or course of a coronary artery) that lead to clinically significant problems are relatively rare. Symptomatic manifestations may include ischemia or syncope. Clinical presentation of anomalous coronary arteries is difficult to distinguish from other more common causes of cardiac disease; however, an anomalous coronary artery is an important diagnosis to exclude, particularly in young patients who present with unexplained symptoms (e.g., syncope). There is no specific clinical presentation to suggest a coronary artery anomaly.

Coronary CTA has several important limitations. The presence of dense arterial calcification or an intracoronary stent can produce significant beam-hardening artifacts and may preclude a satisfactory study. The presence of an uncontrolled rapid heart rate or arrhythmia hinders the ability to obtain diagnostically satisfactory images. Evaluation of the distal coronary arteries is generally more difficult than visualization of the proximal and mid-segment coronary arteries due to greater cardiac motion and the smaller caliber of coronary vessels in distal locations.

Radiation delivered with current generation scanners utilizing reduction techniques (prospective gating and spiral acquisition) has declined substantially—typically to under 10 mSv. For example, an international registry developed to monitor coronary CTA radiation recently reported a median 2.4 mSv (IQR 1.3 to 5.5) exposure. (3) In comparison, radiation exposure accompanying rest-stress perfusion imaging ranges varies according to isotope used—approximately 5 mSv for rubidium-82 (PET), 9 mSv for sestamibi (SPECT), 14 mSv for F-18 FDG (PET) and 41 mSv for thallium; during diagnostic invasive coronary angiography approximately 7 mSv will be delivered. (4) EBCT using ECG triggering delivers the lowest dose (approximately 0.7 to 1.1 mSv with 3-mm sections). Any cancer risk due to radiation exposure from a single cardiac imaging test depends on age (higher with younger age at exposure) and sex (greater for women). (5-7) Empirical data (8) suggest that every 10 mSv of exposure is associated with a 3% increase in cancer incidence over 5 years.
POLICY
1. Contrast-enhanced computed tomographic angiography using 64 slices or greater may be considered medically necessary for the following indications:
 a. For the evaluation of chest pain syndrome in patients with intermediate pre-test probability of CAD by Framingham risk scoring (10-20%)* or by American College of Cardiology criteria**(see policy guidelines) and ECG is uninterpretable or patient is unable to exercise or have contraindications to exercise and pharmacologic stress testing.
 b. For the evaluation of acute chest pain in patients with intermediate pre-test probability of CAD by Framingham risk scoring (10-20%)* or by American College of Cardiology criteria**(see policy guidelines) and no ECG changes and serial enzymes are negative
 c. For the evaluation of chest pain syndrome in patients with uninterpretable or equivocal stress test (exercise, perfusion, or stress echo).
 d. For the assessment of complex congenital heart disease including anomalies of coronary circulation, great vessels, and cardiac chambers and valves.

2. Contrast-enhanced computed tomographic angiography for the emergency evaluation of patients without known coronary artery disease and acute chest pain is considered medically necessary.

3. Contrast-enhanced computed tomographic angiography for coronary artery evaluation is considered experimental / investigational for all other indications.

4. Contrast-enhanced computed tomographic angiography is considered experimental / investigational for any of the following contraindications to the procedure:
 a. Body mass index (BMI) greater than 40.
 b. Inability to image at desired heart rate (under 80 beats per minute).
 c. Persons in atrial fibrillation or with other significant arrhythmia.
 d. Persons with extensive coronary calcification by plain film or with prior Angston score greater than 1700.

POLICY GUIDELINES
1. Current guidelines from the American Heart Association recommend against routine stress testing for screening asymptomatic adults.

3. ACC Criteria for Pre-Test Probability of CAD by Age, Gender and symptoms:

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>Gender</th>
<th>Typical / Definite Angina Pectoris</th>
<th>Atypical / Probable Angina Pectoris</th>
<th>Nonanginal Chest Pain</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30</td>
<td>Men</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
<td>Very Low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
<td>Very Low</td>
</tr>
<tr>
<td>40-49</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Low</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td>50-59</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
<td>Very Low</td>
</tr>
<tr>
<td>> 60</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
</tbody>
</table>

High: >90% pretest probability; intermediate: between 10% and 90% pretest probability; low: between 5% and 10% pretest probability; and very low: < 5% pretest probability.

RATIONALE

This policy was originally based on a literature search conducted on MEDLINE® via PubMed through February 2004 and updated with subsequent TEC Assessments in 2005, 2006, and 2011. (9-11) The objective of the 2005 TEC Assessment was to evaluate the clinical effectiveness of contrast-enhanced cardiac computed tomography angiography (CTA) using either electron beam computed tomography (EBCT) or multidetector-row computed tomography (MDCT) as a noninvasive alternative to invasive coronary angiography (ICA), particularly in patients with a low probability of significant coronary artery stenosis. Evaluation of the coronary artery anatomy and morphology was the most frequent use of cardiac CTA and primary focus of the TEC Assessment. The Assessment considered multiple indications, but CT technology used in studies reviewed is now outdated (studies employed 16 slice scanners). The TEC Assessment concluded that the use of contrast-enhanced cardiac CT angiography for screening or diagnostic evaluation of the coronary arteries did not meet TEC criteria.

The 2006 TEC Assessment was undertaken to determine the usefulness of CTA as a substitute for ICA for two indications: in the diagnosis of coronary artery stenosis and in the evaluation of acute chest pain in the emergency room. Just seven studies performed in the ambulatory setting utilizing 40 to 64 slice scanners were identified. Two studies performed in the emergency room used 4- or 16-slice scanners. Evidence was judged insufficient to form conclusions. Available studies at the time were inadequate to determine the effect of CTA on health outcomes for the diagnosis of coronary artery stenosis in patients referred for angiography or for evaluation of acute chest pain in the emergency room.

Three indications for cardiac or coronary CTA are considered in the current policy: 1) evaluation of anomalous coronary arteries, 2) patients with acute chest pain without known coronary disease presenting in the ER setting, and 3) evaluation of stable patients with signs and symptoms of CAD in the non-ER setting.
Anomalous Coronary Arteries
Anomalous coronary arteries are an uncommon finding during angiography, occurring in approximately 1% of coronary angiograms completed for evaluation of chest pain. However, these congenital anomalies can be clinically important depending on the course of the anomalous arteries. A number of case series have consistently reported that coronary CTA is able to delineate the course of these anomalous arteries, even when conventional angiography cannot. (12-15) However, none of the studies reported results when the initial reason for the study was to identify these anomalies nor did any of the studies discuss impact on therapeutic decisions. Given the uncommon occurrence of these symptomatic anomalies, it is unlikely that a prospective trial of coronary CTA could be completed. Thus, a policy statement includes this application (i.e., evaluating anomalies in native coronary arteries) as medically necessary in symptomatic patients only when conventional angiography is non-diagnostic and when the result will have an impact on treatment.

Patients with Acute Chest Pain and without Known Coronary Artery Disease
A 2011 TEC Assessment examined evidence surrounding the evaluation of patients with acute chest pain and without known coronary artery disease. (11) Randomized controlled trials and prospective observational studies reporting prognosis were identified by searching the MEDLINE database through May 2011, and updated with a subsequent search.

Two randomized controlled trials and two prognostic studies conducted in emergency settings were identified. The first evaluated 197 randomized patients from a single center without evidence of acute coronary syndromes to coronary CTA (n=99) or usual care (n=98). (16) Over a 6-month follow-up no cardiac events occurred in either arm. Invasive coronary angiography rates were somewhat higher in the coronary CTA arm (12.1% vs. 7.1%). Diagnosis was achieved more quickly following coronary CTA. The second trial (CT-STAT) evaluated a similar sample of 699 randomized patients from 16 centers—361 undergoing coronary CTA and 338 myocardial perfusion imaging. (17) Over a 6-month follow-up there were no deaths in either arm, 2 cardiac events in the coronary CTA arm and 1 in the perfusion imaging arm. Invasive coronary angiography rates were similar in both arms (7.2% after coronary CTA; 6.5% after perfusion imaging). A second non-invasive test was obtained more often following coronary CTA (10.2% versus 2.1%), but cumulative radiation exposure in the coronary CTA arm (using retrospective gating) was significantly lower—mean 11.5 versus 12.8 mSv. Time to diagnosis was shorter (mean 3.3 hours) and estimated emergency room costs lower with coronary CTA.

An RCT by Litt et al also evaluated the safety of coronary CT in the evaluation of patients in the emergency department. (18) Although the study was a randomized comparison to traditional care, the principal outcome was the safety outcomes of subjects with negative CTA examinations. No patients who had negative CTA examinations (n=460) died or had a myocardial infarction within 30 days. Compared with traditional care, patients in the CTA group had higher rates of discharge from the emergency room (49.6% vs 22.7%), a shorter length of stay (median 18.0 hours vs 24.8 hours), and a higher rate of detection of coronary disease (9.0% vs 3.5%). Another RCT by Hoffmann et al compared length of stay and patient outcomes in patients evaluated with CTA versus usual care. (19) In patients in the CTA arm of the trial, the mean length of stay in the hospital was reduced by 7.6 hours and more patients were discharged directly from the emergency department (47% vs 12%). There were no undetected coronary syndromes and no differences in adverse events at 28 days. However, in the CTA arm, there was
more subsequent diagnostic testing and higher cumulative radiation exposure. The cumulative costs of care were similar between the two groups.

Two studies reported no cardiac events following a negative coronary CTA in the emergency room after 12 months (n=481) (18) and 24 months (n=368) (19) follow-up.

The Assessment provided a number of conclusions as follows. Owing to the negative prognostic value of coronary CTA in this population, the test offers an alternative for patients and providers. Evidence obtained in the emergency setting, similar to more extensive results among ambulatory patients, indicates a normal coronary CTA provides a prognosis at least as good as other negative non-invasive tests. Other important outcomes that require consideration in comparing technologies include invasive coronary angiography rates, use of a second non-invasive test, radiation exposure, and follow-up of any incidental findings. While there is uncertainty accompanying the limited trial evidence, it is reasonable to conclude that the invasive angiography rate following coronary CTA is similar to that following perfusion imaging. Evidence regarding comparative differences in obtaining a second non-invasive test is limited to CT-STAT and was greater following coronary CTA. Despite that difference, cumulative radiation exposure remained lower in the coronary CTA arm utilizing retrospective gating techniques. Given further reduction realized with prospective gating and other techniques, radiation exposure accompanying coronary CTA will continue to decrease. Incidental findings following coronary CTA are common and lead to further testing without evidence for benefit.

Stable Patients with Angina and Suspected Coronary Artery Disease

Before the introduction of coronary CTA, the initial noninvasive test in a diagnostic treatment strategy was always functional. The choice of functional test is based on clinical factors such as sex, ECG abnormalities, and chest pain characteristics. Patients with suspicious findings are often referred to invasive angiography. When disease is detected, treatment alternatives include medical therapy or revascularization (PCI or CABG). Which approach to adopt is based on the extent of anatomic disease, symptom severity, and evidence of ischemia from functional testing or more recently fractional flow reserve obtained during invasive angiography. A difficulty in evaluating a non-invasive diagnostic test for CAD is that it is part of testing and treatment strategy. The most informative and convincing evidence would accordingly compare outcomes following an anatomic-first (coronary CTA) and functional-first (e.g., perfusion imaging, stress echocardiography) strategies. Lacking direct comparative evidence, the steps or links in the testing-treatment pathway must be examined including diagnostic accuracy, need for invasive angiography following a non-invasive test, prognosis after a negative test, and likely outcomes of treatment based on information provided by the test.

A literature search of the MEDLINE database through August 2011 was conducted. Relevant studies identified included multicenter studies comparing diagnostic performance of coronary CTA to angiography for evaluation of native arteries, studies of incidental findings, radiation exposure, prognosis, and studies of downstream or subsequent testing—all important considerations when comparing coronary CTA in the diagnostic-treatment pathway to alternatives.
Multicenter Diagnostic Accuracy Studies

Four multicenter studies evaluated the diagnostic accuracy of coronary CTA employing invasive angiography as referent standard. All patients enrolled in the four studies were scheduled for ICA; the population of interest here are patients at intermediate risk only a minority of whom would proceed to ICA.

ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) compared coronary CTA to ICA in 230 of 245 individuals experiencing typical or atypical chest pain referred for non-emergent ICA. (20) Three readers blinded to ICA results interpreted coronary CTA scans. Of the 143 normal coronary CTA scans ICA was normal in 142 (negative predictive value 99%); the false positive rate was 17%. Radiation dose, prevalence of incidental non-cardiac findings and follow-up were not reported in the manuscript. Using a 50% stenosis cutoff, disease prevalence was 25% with 13% having 70% or greater stenosis. Estimated pretest disease probability was not reported.

CORE 64 (Coronary Artery Evaluation Using 64-Row Multidetector Computed Tomography Angiography) evaluated 405 individuals referred for ICA to evaluate suspected CAD at 9 centers. (21) There were 89 patients (22%) excluded from analyses due to Agatston calcium score greater than 600; results from 291 of 316 remaining individuals were analyzed. Coronary CTA was the initial diagnostic test and investigators and physicians were subsequently blinded to coronary CTA results. Sensitivity was 85%, negative predictive value 83%, and false-positive rate 10%. Coronary CTA radiation dose was 13.8 ± 1.2 mSv for men and 15.2 ± 2.4 mSv for women. Noncardiac findings were reported to treating physician, but not described in the manuscript. Disease prevalence was 56% using a 50% stenosis cutoff. Pretest disease probability was not reported.

Meijboom et al. (22) evaluated 433 individuals aged 50 to 70 years seen at 3 university hospitals referred for ICA to evaluate suspected stable or unstable angina; 371 consented to participate and 360 completed the study. Tests were interpreted in blinded fashion. Sensitivity was 99%, negative predictive value 97%, and false-positive rate 36%. Estimated radiation exposure based on instrument parameters ranged from 15 to 18 mSv. The frequency of noncardiac findings was not reported. Disease prevalence was 68% using a 50% stenosis cutoff; pretest probability was not reported.

Chow et al. (23) consented 181 patients and examined 169 from 250 eligible patients referred to ICA for evaluation of coronary artery disease (n=117) or structural heart disease (n=52). Four centers evaluated differing numbers of patients—102 (60.3%), 40 (23.7%), 16 (9.5%) and 11 (6.5%) respectively. Overall sensitivity for obstructive CAD was 81%, negative predictive value 85%, and false positive rate 7%. Performance characteristics differed substantially and significantly by site. The center enrolling the majority of patients reported sensitivity, specificity, negative and positive predictive values of 93%, 93%, 91% and 95% respectively; the other 3 centers 67%, 93%, 92%, and 71%. Average radiation exposure was estimated to be 11.0 ± 6.8 mSv. Disease prevalence was 53% using a 50% stenosis cutoff and mean estimated pretest probability of CAD 47%.
There was variability in coronary CTA diagnostic accuracy reported from these multicenter studies spanning different disease prevalence populations. The lower sensitivity reported by Chow et al. (23) is of note alongside the considerable between-center variability. In contrast to the others, the study used visual ICA assessment as a referent standard. While arguably visual assessment is most often used in practice, it is prone to imprecision. (24, 25) Although Chow et al. (23) reported high inter-observer agreement for ICA (kappa=0.88), Zir et al. (25) found 4 experienced observers agreed 65% of the time whether a stenosis exceeded 50% in 20 angiograms. Finally, the small number of patients enrolled from three centers relative to overall annual coronary CTA volume (center 1—102/1325; 2—40/1539; 3—11/1773; 4—16/268) might reflect sampling variability (screening procedures or whether consecutive patients were approached was not reported).

Patient populations included in each study varied, as did disease prevalence. Estimates of pretest disease probability were not reported except by Chow et al., (23) but given that all patients were referred to ICA they were presumably at least in the upper intermediate probability range. With those caveats, the studies support concluding that coronary CTA is sensitive for detecting stenoses in samples with varying disease prevalences. Sensitivities are at least as good those cited for other noninvasive tests; false positives are not uncommon but the rate similar to other noninvasive tests. However, as suggested by Chow et al. (23) sensitivity and specificity achieved in the real world are likely lower than those reported under more carefully controlled conditions. These results are, however, suspect to verification bias (26) as all patients were referred for ICA. The performance characteristics reported from these studies, as well as for accuracy studies of some non-invasive test among patients selectively referred to ICA, might differ in practice when the test is used in patients not referred. In comparison, a recent meta-analysis including smaller single center studies (42 total) estimated pooled sensitivity and specificity of 98% and 85%. (27) Finally, radiation exposure reported in these studies is consistent with others using retrospective gating. Current prospective gating techniques will result in lower radiation doses.

Incidental Findings
Nine studies using 64+ slice scanners were identified. (28-36) Incidental findings were frequent (26.6% to 68.7%) with pulmonary nodules typically the most common and cancers rare (approximately 5/1000 or less). Aglan et al. (28) compared the prevalence of incidental findings when the field of view was confined narrowly to the cardiac structures to those seen when the entire thorax was imaged. As expected, incidental findings were less frequent in the restricted field (clinically significant findings in 14% versus 24% when the entire field was imaged).

Prognosis
Hulten et al. (37) performed a meta-analysis of 18 studies (n=9,592) with 3 or more months follow-up (median 20 months) enrolling patients with suspected CAD (mean age 59 years, 58% male). Annualized death or MI rates after a normal coronary CTA (no identified stenosis >50%) was 0.15%. The pooled rate included 2 studies of EBCT and 4 utilizing 16 slice scanners; most events in the normal group occurred in one of the EBCT studies. Bamberg et al. (38) pooled results from 9 studies (n=3,670) enrolling ≥100 patients with ≥1 year follow-up enrolling patients with suspected CAD (mean age 59.1±2.6 years, 63% male). The pooled annualized event rate (all-cause and cardiac death, MI, unstable angina, revascularization) was 1.1% following a coronary CTA without evidence of significant stenosis; in the 38% of patients without evidence of any atherosclerotic plaque the annual event rate 0.4%. In comparison, Metz et al. (39) performed a meta-analysis of event rates following a negative myocardial perfusion imaging
(MPI) and stress echocardiography. The pooled annual cardiac death and MI rates following negative MPI (17 studies; 8,008 patients) and stress echocardiography (4 studies; 3,021 patients) were 0.45% and 0.51% respectively.

Subsequent or Downstream Testing
Whether tests are used to replace, or added to, others currently in use is relevant. Few studies have addressed this issue. In an analysis of 2006 data from patients without CAD as recorded in claims, Min et al. (40) found that following MPI 11.6% of 6,588 patients underwent subsequent MPI, coronary CTA, or invasive angiography; following coronary CTA 14.6% of 1647 patients underwent one of those tests. More recently, Cheezum et al. (41) retrospectively identified 241 symptomatic patients without known CAD undergoing coronary CTA and matched them by age and sex to 252 also symptomatic patients undergoing MPI. Downstream testing was less frequent following coronary CTA than MPI (11.5% vs. 17.0%) as well as ICA (3.3% vs. 8.1%). Finally, coronary CTA and ICA in Ontario are centralized to a single academic center in Ottawa, which allowed investigators to examine coronary CTA accuracy concurrent with the impact on ICA referrals. (24) Consecutive patients (n=3,538) were evaluated by ICA during 14 months before and in the 12 months after (n=3,479) coronary CTA introduction. The rate of normal ICA decreased from 31.5% before to 26.8% after coronary CTA introduction (p=0.003). During the same period at 3 other centers without coronary CTA programs, normal ICA rates increased from 30.0% to 31.0%.

Radiation Exposure
Exposure to ionizing radiation increases lifetime cancer risk (BEIR VII, 42). Three studies have estimated excess cancer risks due to radiation exposure from coronary CTA (6, 7, 43). Assuming a 16 mSv dose, Berrington de Gonzalez et al. (44) estimated that the 2.6 million coronary CTAs performed in 2007 would result in 2,700 cancers or approximately 1 per 1000. Smith-Bindman et al. (7) estimated cancer would develop in 1 of 270 women and 1 of 600 men age 40 undergoing coronary CTA with a 22 mSv dose. Einstein et al. (6) employed a standardized phantom to estimate organ dose from 64 slice coronary CTA. With modulation and exposures of 15 mSv in men and 19 mSv in women, the calculated lifetime cancer risk at age 40 was 7 per 1000 men (1 in 143) and 23 per 1000 women (1 in 43). However, estimated radiation exposure used in these studies is considerably higher than received with current scanners—now typically under 10 mSv and often less than 5 mSv with contemporary machines and radiation reduction techniques. For example, in the 47-center PROTECTION I study enrolling 685 patients, the mean radiation dose was 3.6 mSv using a sequential scanning technique. (45)

Although indirectly related to coronary CTA, Eisenberg et al. (8) analyzed administrative data from 82,861 patients undergoing imaging or procedure accompanied by radiation between April 1996 and March 2006 with 12,020 incident cancers identified. Based on estimated radiation exposures accompanying various cardiac imaging and procedures, over 5 years there was an increased relative hazard for cancer of 1.003 per mSv (95% confidence interval [CI]: 1.002-1.004).
Conclusions
A number of multicenter studies have evaluated the diagnostic accuracy of CTA for diagnosing coronary ischemia in an outpatient population. In general, these studies report high sensitivity and specificity, but there is some variability in these parameters across studies. Use of CTA in this situation does not have the same advantage of improving the efficiency of diagnosis as it does in the emergency setting. The risk/benefit ratio for this test depends on the diagnostic accuracy, the impact of incidental findings, and the amount of radiation exposure. Given the uncertainty in these parameters, it is not possible to conclude that the use of CTA in this setting leads to improved outcomes compared to alternative strategies. Therefore CTA is considered investigational when used in the outpatient setting to evaluate patients with suspected cardiac ischemia.

Other Diagnostic Uses of Coronary CTA
Given its ability to define coronary artery anatomy, there are many other potential diagnostic uses of coronary CTA including patency of coronary artery bypass grafts, in-stent restenosis, screening, and preoperative. Evaluating patency of vein grafts is generally less of a technical challenge due to their size and lesser motion during imaging. In contrast internal mammary grafts may be more difficult to image due to their small size and presence of surgical clips. Finally, assessing native vessels distal to grafts presents difficulties due to their small size and when calcifications are present. For example, a 2008 meta-analysis including results from 64-slice scanners reported high sensitivity 98% (95% CI: 95 to 99; 740 segments) and specificity 97% (95% CI: 94 to 97). (46) Other small studies have reported high sensitivity and specificity. (47, 48) Lacking are multicenter studies demonstrating likely clinical benefit, particularly given the reasonably high disease prevalence in patients evaluated. Use of coronary CTA for evaluation of in-stent restenosis presents other technical challenges—motion, beam hardening, and partial volume averaging. Whether those challenges can be overcome sufficiently to obtain sufficient accuracy and impact outcomes has not been demonstrated. The use for screening a low-risk population was recently evaluated in 1000 patients undergoing coronary CTA compared to a control group of 1000 similar patients. (49) Findings were abnormal in 215 screened patients. Over 18 months follow-up, screening was associated with more invasive testing, statin use, but without difference in cardiac event rates. Lastly, coronary CTA for preoperative evaluation before non-cardiac surgery has been suggested, evaluated in a only small studies, and lacking demonstrable clinical benefit.

Summary
In patients presenting to emergency settings with acute chest pain that is possibly cardiac in origin and no known history of CAD, the net health outcome following coronary CTA appears at least as good as that obtained following other noninvasive testing strategies. CTA can rule out active coronary disease with a high rate of certainty in patients with low to moderate pre-test probabilities of CAD, and is an efficient strategy in the emergency setting. Therefore, CTA may be considered medically necessary for use in this patient population.

When anomalous coronary arteries require evaluation in symptomatic patients, coronary CTA also is likely to be beneficial in the setting of equivocal or unsuccessful invasive angiography. It has been demonstrated that CTA can define the anatomy of anomalous vessels when angiography is equivocal. Thus, CTA may be considered medically necessary for evaluating anomalous coronary arteries.
For other indications such as evaluation of patients with stable chest pain, the balance of potential benefits and harms remains uncertain owing largely to the lack of direct comparative evidence. A fundamental difficulty with current, albeit substantial indirect evidence surrounding coronary CTA, is that decision making has historically relied on a strategy of functional non-invasive testing followed by invasive angiography to define anatomy. The individual studies and systematic reviews of coronary CTA accuracy for anatomic obstruction indicate sensitivity, specificity, PPV and NPV as good as or better than with other noninvasive tests. There is limited evidence that coronary CTA may decrease the rate of normal ICAs in the diagnostic evaluation of CAD. Studies in representative populations examining the frequency of repeated testing are lacking. Noncardiac findings are frequent, but the consequences as benefits and harms have received limited scrutiny. Evidence indicates radiation exposure with current scanners utilizing reduction techniques is lower than with MPI.

Practice Guidelines and Position Statements

Appropriate use criteria (50-52) and expert consensus documents (53-55), have been published jointly by ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT but U.S. guidelines have not been developed. The authors of these publications state that the evidence base for CTA is not yet sufficiently robust to support clinical guideline development. The following are statements from the consensus document:

The “…overall sensitivity and specificity on a per-patient basis are both high, and the number of indeterminate studies due to inability to image important coronary segments in the select cohorts represented is less than 5%. In most circumstances, a negative coronary CT angiogram rules out significant obstructive coronary disease with a very high degree of confidence, based on the post-test probabilities obtained in cohorts with a wide range of pretest probabilities. However, post-test probabilities following a positive coronary CT angiogram are more variable, due in part to the tendency to overestimate disease severity, particularly in smaller and more distal coronary segments or in segments with artifacts caused by calcification in the arterial walls. At present, data on the prognostic value of coronary CTA using 64-channel or greater systems remain quite limited. Furthermore, no large-scale studies have yet made a direct comparison of long-term outcomes following conventional diagnostic imaging strategies versus strategies involving coronary CTA.”

“In the context of the emergency department evaluation of patients with acute chest discomfort, currently available data suggest that coronary CTA may be useful in the evaluation of patients presenting with an acute coronary syndrome (ACS) who do not have either acute electrocardiogram (ECG) changes or positive cardiac markers. However, existing data are limited, and large multicenter trials comparing CTA with conventional evaluation strategies are needed to help define the role of this technology in this category of patients.”

NICE considers coronary CTA indicated for patients with stable chest pain, Agaston score <400, when the pretest likelihood is between 10% and 29%. (56)
CODING

The following codes for treatment and procedures applicable to this policy are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

CPT/HCPCS

75574 Computed tomographic angiography, heart, coronary arteries and bypass grafts (when present), with contrast material, including 3D image postprocessing (including evaluation of cardiac structure and morphology, assessment of cardiac function, and evaluation of venous structures, if performed)

DIAGNOSIS

414.00 Coronary atherosclerosis of unspecified type of vessel, native or graft
414.01 Coronary atherosclerosis of native coronary artery
414.02 Coronary atherosclerosis of autologous vein bypass graft
414.03 Coronary atherosclerosis of nonautologous biological bypass graft
414.04 Coronary atherosclerosis of artery bypass graft
414.05 Coronary atherosclerosis of unspecified type of bypass graft

ICD-10 Diagnosis (Effective October 1, 2014)

I25.10 Atherosclerotic heart disease of native coronary artery without angina pectoris
I25.110 Atherosclerotic heart disease of native coronary artery with unstable angina pectoris
I25.111 Atherosclerotic heart disease of native coronary artery with angina pectoris with documented spasm
I25.118 Atherosclerotic heart disease of native coronary artery with other forms of angina pectoris
I25.119 Atherosclerotic heart disease of native coronary artery with unspecified angina pectoris
I25.700 Atherosclerosis of coronary artery bypass graft(s), unspecified, with unstable angina pectoris
I25.701 Atherosclerosis of coronary artery bypass graft(s), unspecified, with angina pectoris with documented spasm
I25.708 Atherosclerosis of coronary artery bypass graft(s), unspecified, with other forms of angina pectoris
I25.709 Atherosclerosis of coronary artery bypass graft(s), unspecified, with unspecified angina pectoris
I25.710 Atherosclerosis of autologous vein coronary artery bypass graft(s) with unstable angina pectoris
I25.711 Atherosclerosis of autologous vein coronary artery bypass graft(s) with angina pectoris with documented spasm
I25.718 Atherosclerosis of autologous vein coronary artery bypass graft(s) with other forms of angina pectoris
I25.719 Atherosclerosis of autologous vein coronary artery bypass graft(s) with unspecified angina pectoris
I25.720 Atherosclerosis of autologous artery coronary artery bypass graft(s) with unstable angina pectoris
I25.721 Atherosclerosis of autologous artery coronary artery bypass graft(s) with angina pectoris with documented spasm
I25.728 Atherosclerosis of autologous artery coronary artery bypass graft(s) with other forms of angina pectoris
I25.729 Atherosclerosis of autologous artery coronary artery bypass graft(s) with unspecified angina pectoris
I25.730 Atherosclerosis of nonautologous biological coronary artery bypass graft(s) with unstable angina pectoris
I25.731 Atherosclerosis of nonautologous biological coronary artery bypass graft(s) with angina pectoris with documented spasm
I25.738 Atherosclerosis of nonautologous biological coronary artery bypass graft(s) with other forms of angina pectoris
I25.739 Atherosclerosis of nonautologous biological coronary artery bypass graft(s) with unspecified angina pectoris
I25.790 Atherosclerosis of other coronary artery bypass graft(s) with unstable angina pectoris
I25.791 Atherosclerosis of other coronary artery bypass graft(s) with angina pectoris with documented spasm
I25.798 Atherosclerosis of other coronary artery bypass graft(s) with other forms of angina pectoris
I25.799 Atherosclerosis of other coronary artery bypass graft(s) with unspecified angina pectoris
I25.810 Atherosclerosis of coronary artery bypass graft(s) without angina pectoris

REVISIONS

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision Details</th>
</tr>
</thead>
</table>
| 01-10-2006 | In “Policy” section, deleted old policy and added “Computed tomographic angiography (CTA) is considered experimental/investigational for the evaluation of coronary arteries including but not limited to the following:
1. Screening for coronary artery disease (CAD), either in asymptomatic subjects or as part of a preoperative evaluation
2. Diagnosis of CAD, in patients with acute or non-acute symptoms, or after a coronary intervention
3. Delineation of a coronary artery anatomy or anomaly
Computed tomographic angiography (CTA) of other arteries may be indicated when medically necessity is properly documented.”

In “Coding”, Covered Diagnosis section added “Note: The use of any diagnosis code does not guarantee reimbursement. Medical necessity will be based on documentation in the medical record.”

In “Reference” Government Agency; Medical Society; and Other Authoritative Publications section added #3 – BCBSA, #4 - BCBSKS Medical Consultant (401) and #5 – BCBSKS Medical Consultant (MCMC). |

| Effective 09-01-2006 | In “Policy” section added “Note: As of June 14, 2006, per updated review by consultant, coronary CT angiography remains experimental / investigational because of lack of adequate repeated studies. Further investigation is needed. Consultant (MCMC – S087, Board certified in Internal Medicine, Cardiovascular Disease and Clinical Cardiac Electrophysiology) stated “There are, however, rare, highly specialized cases where a patient is at high risk of complications from coronary angiography, a properly performed SPECT nuclear stress imaging study...” |
has been somewhat positive but not definitive, where the noninvasive detection of a significant coronary lesion would lead to an invasive evaluation, in which case multislice CT angiography procedure is medically appropriate and necessary in order to exclude a lesion and prevent a high risk invasive procedure.”

In “Coding” CPT section added CPT codes 0145T, 0150T, and 0151T as directed by the Medical Director.

In “Reference” Government Agency; Medical Society; and Other Authoritative Publications section added #6, MCMC, Medical Care Ombudsman Program (MCOP), June 14, 2006, MCOP ID 1070-1753.

Effective 01-01-2007

In “Coding” CPT section, CPT code 72175 revised for 2007, the term ‘noncoronary’ has been added.

Effective 04-01-2007

In “Policy” section, deleted “Consultant (MCMC – S087, Board certified in Internal Medicine, Cardiovascular Disease and Clinical Cardiac Electrophysiology) stated “There are, however, rare, highly specialized cases where a patient is at high risk of complications from coronary angiography, a properly performed SPECT nuclear stress imaging study has been somewhat positive but not definitive, where the noninvasive detection of a significant coronary lesion would lead to an invasive evaluation, in which case multislice CT angiography procedure is medically appropriate and necessary in order to exclude a lesion and prevent a high risk invasive procedure” per Medical Director.

In “Coding” CPT section, deleted CPT codes 0145T, 0150T, and 0151T per Medical Director.

In “Coding” section, Covered Diagnosis, deleted “Note: The use of any diagnosis code does not guarantee reimbursement. Medical necessity will be based on documentation in the medical record. Services performed for any other diagnosis requires review with medical records” per Medical Director.

Effective 07-30-2007

- Description section was updated to provide more detail about CTA technology.

- Policy was liberalized to consider CTA medically necessary for evaluation of anomalous (native) coronary arteries in symptomatic patients when conventional angiography is unsuccessful or equivocal and when results will impact treatment. CTA remains experimental / investigational for all other indications.

- Policy section was revised deleting: "Computed tomographic angiography (CTA) is considered experimental/investigational for the evaluation of coronary arteries including but not limited to the following:

1. Screening for coronary artery disease (CAD), either in asymptomatic subjects or as part of a preoperative evaluation

2. Diagnosis of CAD, in patients with acute or non-acute symptoms, or after a coronary intervention

3. Delineation of a coronary artery anatomy or anomaly"

AND

"Note: As of June 14, 2006, per updated review by consultant, coronary CT angiography remains experimental / investigational because of lack of adequate repeated studies. Further investigation is needed."

- Policy section was revised adding the first two paragraphs.

- Documentation section was added.

- CPT codes 0146T, 0147T, 0148T, and 0149T were added for coronary...
<table>
<thead>
<tr>
<th>CTA for Coronary Artery Evaluation Page 16 of 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective 01-25-2008</td>
</tr>
<tr>
<td>Diagnosis codes 746.85 and 746.87 were added for coronary anomalies. Codes 747, 747.10, 747.11, 747.21, 747.22, and 747.3 were deleted.</td>
</tr>
<tr>
<td>References were updated.</td>
</tr>
<tr>
<td>Effective 01-30-2008</td>
</tr>
<tr>
<td>In Description section:</td>
</tr>
<tr>
<td>• Added “coronary” to the second paragraph, fifth sentence, “…suggested that coronary CTA may be…”</td>
</tr>
<tr>
<td>• Added “coronary” to the third paragraph, first sentence, “Coronary CTA has several…”</td>
</tr>
<tr>
<td>In Policy section:</td>
</tr>
<tr>
<td>• Removed the third paragraph, “Computed tomographic angiography (CTA) of other arteries may be indicated when medical necessity is properly documented.”</td>
</tr>
<tr>
<td>• Under “Documentation” added “coronary”, “All coronary CTA studies will be…”</td>
</tr>
<tr>
<td>• Under “Utilization” added “coronary”, “Coronary CTA studies will be…”</td>
</tr>
<tr>
<td>In Coding section:</td>
</tr>
<tr>
<td>• Removed CPT codes 70496, 70498, 71275, 72191 73206, 73706, 74175.</td>
</tr>
<tr>
<td>• Removed Diagnosis codes 093.0, 414.10, 415.0, 415.11, 417.0, 417.1, 417.8, 441.02, 444.1, 447.0, 447.2, 453.2, 745.0, 745.10, 745.11, 745.12, 745.19, 745.2, 745.3, 746.87, 747.20, 747.29, 747.40, 794.2, 996.1, 996.74, V12.59</td>
</tr>
<tr>
<td>• Removed Revenue Codes 32X, 34X, 35X, 40X.</td>
</tr>
<tr>
<td>Effective 12-15-2008</td>
</tr>
<tr>
<td>Added “The available evidence does not provide sufficient information to permit conclusions on the effect of coronary CT angiography on health outcomes.”</td>
</tr>
<tr>
<td>“Electron beam computed tomography (EBCT) and multi detector computed tomography (MDCT) are methods used for measurement of coronary artery calcification. Calcium scores have been investigated both as a diagnostic technique in symptomatic patients to determine the necessity of coronary angiography or in asymptomatic patients as a screening technique for coronary artery disease. Published studies do not establish a clear role for detection of coronary artery calcification by computed tomography in coronary disease risk stratification in asymptomatic or symptomatic patients, nor have any studies shown that clinical outcomes can be favorably altered by the use of computed tomography based determination of coronary artery calcification in screening for coronary artery disease”</td>
</tr>
<tr>
<td>In Policy section:</td>
</tr>
<tr>
<td>• Added “The use of computed tomography to detect coronary artery calcification is considered investigational.”</td>
</tr>
<tr>
<td>In Coding section added:</td>
</tr>
<tr>
<td>• Added CPT/HCPCS codes 0144T S8092.</td>
</tr>
<tr>
<td>• Added Diagnosis codes 414.01, V81.1</td>
</tr>
<tr>
<td>Effective 12-15-2008</td>
</tr>
<tr>
<td>Revised title from Coronary CT Angiography and Calcium Scoring to Contrast-Enhanced Computed Tomography Angiography (CTA) for Coronary Artery</td>
</tr>
</tbody>
</table>
Evaluation.
- Added a "See also" reference to other pertinent policies.

In Description section:
- Updated terminology and discussion.

In Policy section:
- Removed "The use of computed tomography to detect coronary artery calcification is considered investigational." See Computed Tomography to Detect Coronary Artery Calcification policy.

Added Rationale section.

In Coding section:
- Removed CPT / HCPCS codes: 0144T, S8092.
- Removed Diagnosis codes: 414.11, 414.19, 441.01, 441.03, 441.1, 441.2, 441.5, 441.3, 441.7, 441.9, 442.82, 446.7, 746.85, V81.0.
- Added Diagnosis codes: 414.02, 414.03, 414.04, 414.05.

Updated Revisions and References sections.

Effective 08-11-2009

In Header:
- Added policy reference of Cardiac Computed Tomography (CT)

In Rationale section:
- Added 2009 Update

In Coding Section:
- Added CPT Code: 75574
- Removed CPT Codes: 0146T, 0147T, 0148T, 0149T

08-19-2011

In the Policy Language section:
- In Item #1, added “using 64 slices or greater may be considered medically necessary for the following indications:
 a. For the evaluation of chest pain syndrome in patients with intermediate pre-test probability of CAD by Framingham risk scoring (10-20%)* or by American College of Cardiology criteria ** (see policy guidelines) and ECG is uninterpretable of patient is unable to exercise or have contraindications to exercise and pharmacologic stress testing.
 b. For the evaluation of acute chest pain in patients with intermediate pre-test probability of CAD by Framingham risk scoring (10-20%)* or by American College of Cardiology criteria** (see policy guidelines) and no ECG changes and serial enzymes are negative.
 c. For the evaluation of chest pain syndrome in patients with uninterpretable or equivocal stress test (exercise, perfusion, or stress echo).
 d. For the assessment of complex congenital heart disease including anomalies of coronary circulation, great vessels, and cardiac chambers and valves.”
- Added Item #3, “Contrast-enhanced computed tomographic angiography is considered experimental / investigational for any of the following Body mass index (BMI) greater than 40.
 a. Inability to image at desired heart rate (under 80 beats per minute).
 b. Persons in atrial fibrillation or with other significant arrhythmia.
 c. Persons with extensive coronary calcification by plain film or with prior contraindications to the procedure:
 d. Angston score greater than 1700.”
<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-09-2011</td>
<td>Updated Description section.</td>
</tr>
<tr>
<td></td>
<td>In the Policy section:</td>
</tr>
<tr>
<td></td>
<td>• Added “Contrast-enhanced computed tomographic angiography for the</td>
</tr>
<tr>
<td></td>
<td>emergency evaluation of patients without known coronary artery disease and</td>
</tr>
<tr>
<td></td>
<td>acute chest pain is considered medically necessary.”</td>
</tr>
<tr>
<td></td>
<td>Updated Rationale section.</td>
</tr>
<tr>
<td></td>
<td>Updated Reference section.</td>
</tr>
<tr>
<td>02-26-2013</td>
<td>Updated Description section.</td>
</tr>
<tr>
<td></td>
<td>Updated Rationale section.</td>
</tr>
<tr>
<td></td>
<td>Updated Reference section.</td>
</tr>
<tr>
<td>12-31-2013</td>
<td>In Coding section:</td>
</tr>
<tr>
<td></td>
<td>• Added ICD-10 Diagnosis (Effective October 1, 2014)</td>
</tr>
</tbody>
</table>

REFERENCES

10. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Contrast-enhanced cardiac computed tomographic angiography in the diagnosis of coronary artery stenosis or for evaluation of acute chest pain. TEC Assessments 2006; Volume 21, Tab 5.

Other References
1. Blue Cross and Blue Shield of Kansas Cardiology Liaison Committee: May 2007; May 2008; April 2009; May 2010; May 2011; May 2012.
2. MCMC, Medical Care Ombudsman Program (MCOP), May 22, 2007, MCOP ID 1074-6539.
3. Blue Cross and Blue Shield of Kansas Radiology Liaison Committee: February 2008; February 2009; February 2010; February 2011; February 2012; February 2013.
4. Blue Cross and Blue Shield of Kansas Medical Advisory Committee: April 2009; April 2010; April 2011; April 2012.