Name of Policy:
Cryoablation of Prostate Cancer

Policy #: 384 Latest Review Date: June 2014
Category: Surgery Policy Grade: B

Background/Definitions:
As a general rule, benefits are payable under Blue Cross and Blue Shield of Alabama health plans only in cases of medical necessity and only if services or supplies are not investigational, provided the customer group contracts have such coverage.

The following Association Technology Evaluation Criteria must be met for a service/supply to be considered for coverage:
1. The technology must have final approval from the appropriate government regulatory bodies;
2. The scientific evidence must permit conclusions concerning the effect of the technology on health outcomes;
3. The technology must improve the net health outcome;
4. The technology must be as beneficial as any established alternatives;
5. The improvement must be attainable outside the investigational setting.

Medical Necessity means that health care services (e.g., procedures, treatments, supplies, devices, equipment, facilities or drugs) that a physician, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury or disease or its symptoms, and that are:

1. In accordance with generally accepted standards of medical practice; and
2. Clinically appropriate in terms of type, frequency, extent, site and duration and considered effective for the patient’s illness, injury or disease; and
3. Not primarily for the convenience of the patient, physician or other health care provider; and
4. Not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient’s illness, injury or disease.
Description of Procedure or Service:
Cryoablation, also known as cryotherapy or cryosurgery, of prostate cancer is a technique in which cryoprobes are inserted percutaneously into the prostate gland to rapidly freeze and thaw tissue causing necrosis. While most studies use total cryoablation, subtotal cryoablation is an emerging technique.

Cryoablation is one of several methods available to treat clinically localized prostate cancer, and may be considered an alternative to radical prostatectomy or radiation therapy. It also may be used for salvage of non-metastatic relapse following initial therapy for clinically localized disease. Using percutaneously inserted cryoprobes, the glandular tissue is rapidly frozen and thawed such that tissue necrosis follows. Cryosurgical ablation is less invasive than surgery and recovery time may be shorter. While external-beam radiation therapy (EBRT) requires multiple treatments, typically only one treatment is required for cryoablation.

Subtotal prostate cryoablation is also being evaluated as a form of more localized therapy (referred to by some as “male lumpectomy”) for small localized prostate cancers.

Policy:

Cryoablation of the prostate meets Blue Cross and Blue Shield of Alabama’s medical criteria for coverage as treatment of clinically localized (organ-confined) prostate cancer when performed:
- As initial treatment; **OR**
- As salvage treatment of disease that recurs following radiation therapy.

Subtotal prostate cryoablation does not meet Blue Cross and Blue Shield of Alabama’s medical criteria for coverage and is considered **investigational** in the treatment of prostate cancer.

Blue Cross and Blue Shield of Alabama does not approve or deny procedures, services, testing, or equipment for our members. Our decisions concern coverage only. The decision of whether or not to have a certain test, treatment or procedure is one made between the physician and his/her patient. Blue Cross and Blue Shield of Alabama administers benefits based on the member's contract and corporate medical policies. Physicians should always exercise their best medical judgment in providing the care they feel is most appropriate for their patients. Needed care should not be delayed or refused because of a coverage determination.

Key Points:

Primary Prostate Cryoablation

Systematic reviews
A 2001 Blue Cross Blue Shield Association Technology Evaluation Center (TEC) Assessment focused on cryoablation for primary treatment of clinically localized prostate cancer arrived at the following conclusions:
- No studies compared outcomes of cryoablation to outcomes of radical prostatectomy or conformal external beam radiotherapy in randomized or otherwise similar patient
populations. In addition, follow-up times were limited to two years or less in most cryoablation studies. Available studies reported only surrogate outcomes: prostate-specific antigen (PSA) and biopsy failure rates, and rates of second treatment.

- Of 34 studies reporting efficacy outcomes after prostate cryoablation, only six (total n=2,352) met the Assessment’s inclusion criteria. Problems with available evidence included short follow-up times, heterogeneous patient populations, and insufficient information on baseline characteristics of enrolled patients. Where data were available, outcomes appeared to be generally comparable across treatment methods. However, data from cryoablation studies were sparse, and comparison of patient populations that may have had different risk distributions, both within and across treatment methods, did not permit conclusions.

- One study presented a retrospective comparison of data from the CaPSURE database, a longitudinal observational database of patients with prostate cancer. Adjusted overall rates of second treatment indicated that patients receiving cryoablation were 1.9 times more likely to have a second treatment than patients who received radical prostatectomy, and 1.4 times more likely than patients who received external-beam radiotherapy (EBRT). When rates of second treatment were stratified by prognostic factors, the rates for cryoablation compared to those for radical prostatectomy tended to be significantly increased for low-risk disease but not for high-risk disease. The same was true for EBRT compared to radical prostatectomy, but to a lesser extent. Thus, these results did not suggest an advantage for cryoablation, and may have indicated poorer outcomes for low-risk disease.

- Perioperative mortality and acute life-threatening consequences of cryoablation appeared to be negligible. Patients had the highest likelihood of impotence after cryoablation, compared to radical prostatectomy or 3-dimensional conformal radiation therapy (3D-CRT). The frequency of incontinence appeared similar to that after 3D-CRT, and potentially less than that after radical prostatectomy. However, other genitourinary complications were unique to cryoablation. Adverse gastrointestinal consequences typical of 3D-CRT were not noted after cryoablation. Long-term consequences of cryoablation were uncertain because follow-up was inadequate.

The conclusions of the 2001 TEC Assessment contrasted with an analysis from the Centers for Medicare and Medicaid Services (CMS) supporting Medicare’s decision that cryosurgical ablation is eligible for coverage. While the TEC Assessment sought data on health outcomes, the CMS assessment used an intermediate outcome, changes in PSA levels. As noted in the CMS assessment, “Data shows that a significant number of patients are able to sustain undetectable levels of PSA for a period of time of at least 24 months. This compares favorably with the biopsy data following external beam irradiation.”

A 2007 Cochrane review of cryoablation for localized prostate cancer found no randomized trials comparing cryoablation with other therapies for primary treatment of localized prostate cancer. Studies identified were case series. The patients recruited (n=1,483) ranged in age from 41 to 84 years, and their conditions were classified by stage: stages T1: 0 to 43%, T2: 24% to 88%, T3: 1% to 41%, and T4: 0 to 14%. The mean preoperative prostate-specific antigen (PSA) level ranged from 9.7 to 39 ng/mL, with Gleason scores less than seven and ranging from 6% to 37%. The authors concluded the following: cryoablation offers a potential alternative to
standard therapies for the primary treatment of localized prostate cancer; however, the poor quality of the available studies makes it difficult to determine the relative benefits of this modality; patients selecting cryoablation as their therapeutic option should be made fully aware of the reported efficacy, complications, and low-grade evidence from which these data are derived.

A 2008 comparative effectiveness review of therapies for clinically localized prostate cancer from the Agency for Healthcare Research and Quality (AHRQ) also found that no randomized trials had evaluated cryoablation. The report also noted that in general neither overall survival (OS) nor prostate-cancer-specific survival was reported for this technique. Progression-free survival (PFS) in patients with T1–T2 stages ranged from 29% to 100%.

In October 2011, a systematic review of localized prostate cancer treatments prepared for AHRQ to update the 2002 U.S. Preventive Services Task Force Recommendation was published. The review found no studies comparing cryoablation with watchful waiting and no randomized trials or cohort studies evaluating OS or prostate cancer-specific mortality outcomes. The available evidence was mostly from uncontrolled studies and found to be very limited and not sufficiently reliable to estimate the benefits or harms of cryoablation.

In a 2012 comparative effectiveness report from the international Prostate Cancer Results Study Group (PCRSRG), PSA-free survival following various prostate cancer treatments, including cryoablation, was noted to be difficult to evaluate, since very few studies comparing results from treatment options were identified. Additionally, variations in methods of evaluating outcomes and reporting results complicated the analysis. No recommendations for cryoablation were made by the PCRSRG.

Randomized, controlled trials
Chin et al recently reported on a randomized trial of cryoablation (CRYO) compared to EBRT in patients with clinical stage T2C-T3B prostate cancer. These patients had node-negative disease and also received six months of hormonal therapy, starting three months before treatment. Only 64 of the planned 150 patients were accrued, entry was limited due to changes in practice and difficulty beginning cryosurgery at one of the sites. Twenty-one of 33 (64%) in the CRYO group and 14 of 31 (45%) in the EBRT-treated group were classified as treatment failure. The mean biochemical disease-free survival (bDFS) was 41 months for the EBRT group compared to 28 months for the CRYO group. The four-year bDFS for EBRT and CRYO groups were 47 and 13%, respectively. The eight-year bDFS for EBRT and cryoablation groups were 59.1% and 17.4%, respectively. Disease-specific survival (DSS) and OS for both groups were very similar and at eight years’ follow-up, were not significantly different. Serious complications were uncommon in either group. EBRT patients exhibited adverse gastrointestinal (GI) effects more frequently. The authors concluded that taking into account the relative deficiency in numbers and the original trial design, this prospective randomized trial indicated that the results of CRYO were less favorable compared to those of EBRT and that CRYO was suboptimal primary therapy in locally advanced prostate cancer.

Donnelly and colleagues reported on a randomized trial of 244 patients with newly diagnosed localized prostate cancer, during the period of December 1997 through February 2003, to
compare cryoablation to EBRT. All patients began neoadjuvant antiandrogen therapy prior to local treatment and continued for a period of three to six months. Median follow-up was 100 months. At 36 months, the biochemical failure rate (PSA nadir + 2 ng/mL) was 17.1% in the cryoablation group versus 13.2% in the radiotherapy group. Overall survival at five years was 89.7% in the cryoablation group versus 88.3% in the radiotherapy group and did not differ statistically (p=0.78). At 36 months, radiotherapy patients had significantly more positive prostate biopsies than the cryoablation group (22 of 76 vs. 7 of 91 patients, respectively [p<0.001]). Observed failure rates at 60 months were equal in both groups but favored cryoablation at 84 months. Twelve cryoablation patients experienced 13 Grade 3 adverse events versus 16 Grade 3 adverse events in 14 radiotherapy patients using National Cancer Institute of Canada Common Toxicity Criteria. Urinary retention was the most common Grade 3 adverse event in both treatment arms. The authors indicated they were unable to establish that cryoablation was noninferior to radiotherapy at 36 months due to the wide confidence interval. However, they noted several issues which limit interpretation of the study results, including the use of lower radiation dosages (68 Gy, 70 Gy, and 73.5 Gy, respectively) than are common today and early trial closure due to lack of patient enrollment.

In a second article from the Donnelly study, Robinson et al reported on quality-of-life (QOL) outcomes in the same 244 patients. With only a few exceptions, the authors found study participants reported QOL at high levels in both the cryoablation and radiotherapy treatment arms. Acute urinary dysfunction, which eventually resolved, occurred more often with cryoablation, as measured using the University of California at Los Angeles (UCLA) Prostate Cancer Index (mean urinary function in cryoablation was 69.4 vs. 90.7 in EBRT; p<0.001; higher scores meaning better function and less bother). UCLA Prostate Cancer Index sexual function decreased in both arms at three months. However, reduced sexual function was reported more in the cryoablation arm (mean cryoablation: 7.2 vs. 32.9 in EBRT; p<0.001). Decreased sexual function continued at the three-year evaluation with the mean score 15 points lower in the cryoablation group.

Nonrandomized, comparative studies

Many nonrandomized studies have reported on cryoablation for localized prostate cancer. While some, but not all, studies collected data prospectively in consecutive patients, none included a concurrent comparison group treated with an established alternative. In addition, it was unclear whether “consecutive” meant patients meeting eligibility criteria or those consenting to enroll in a study. Furthermore, retrospective comparisons used historical data collected using different guidelines to assign risk groups or monitor for recurrence (e.g., frequency of follow-up PSA measurements and PSA thresholds for recurrence). The largest single institution series reported the seven-year actuarial rate of biochemical disease-free survival (bDFS) of 590 consecutively treated patients. However, 59% of the patients were treated using an older, liquid nitrogen system, which the authors asserted “… yields inferior results compared with the argon-based cryomachines we now use….” Even so, reported results combined outcomes obtained with both systems.

Aus reported that cryoablation is now using third-generation equipment and that long-term follow-up from these devices, which emerged around 2000, will be needed. These newer devices use more ultrathin probes and argon gas (as opposed to liquid nitrogen) and create smaller ice
balls. Lian and colleagues reported early results of cryoablation using third-generation technology as primary treatment for 102 patients with localized prostate cancer during the period of 2006 through 2009. Only one patient developed biopsy-confirmed prostate cancer recurrence. PSA levels were elevated in seven patients; however, biopsies were negative. Mild incontinence, urethral sloughing, and erectile dysfunction occurred in 4%, 4.9% and 64%, respectively.

Ball and colleagues reported on quality-of-life (QOL) outcomes on a subset of 719 patients with localized prostate cancer treated with a variety of techniques including cryosurgical ablation. They reported that, in an older population, the tissue destruction resulting from cryoablation appeared to relieve obstructive and irritative urinary symptoms but at the sacrifice of sexual function compared with palladium-103 brachytherapy.

Williams et al compared data from the United States Surveillance, Epidemiology, and End Results (SEER) Medicare-linked data on 10,928 patients with localized prostate cancer treated with primary cryoablation or brachytherapy. Urinary and erectile dysfunction occurred significantly more frequently with cryoablation than brachytherapy (41.4% and 34.7% vs. 22.2% and 21%, respectively). The use of androgen deprivation therapy also occurred significantly more often after cryoablation than brachytherapy, suggesting a higher rate of recurrence after cryoablation (1.4 vs. 0.5 per 100 person years). Bowel complications, however, occurred significantly more frequently with brachytherapy (19%) than cryoablation (12.1%).

Salvage Prostate Cryoablation
Studies have described results from using cryoablation for patients with recurrent, localized prostate cancer following a course of radiation therapy. In 2012, Mouraviev et al reviewed literature published between 1991 and 2012 to compare salvage cryoablation for radio-recurrent prostate cancer to other salvage treatments. The authors reported comparisons were difficult to make since no prospective, randomized studies were identified and PSA failure is defined in various ways. However, the authors noted studies have reported salvage cryoablation outcomes that are comparable to salvage radical prostatectomy on an intermediate term. PSA level less than 10 ng/mL, Gleason score less than or equal to eight, and clinical stage T1c or T2 before salvage cryoablation therapy were identified as favorable prognostic factors. In a 2013 systematic review, Punnen et al evaluated management approaches, including cryoablation, for salvage treatment (biochemical recurrence) after primary treatment for localized prostate cancer. The reviewer noted while there is limited evidence available, cryotherapy is a possible treatment option for salvage therapy although randomized trials are needed.

Wenske and colleagues reported on salvage cryoablation in a series of 396 consecutively treated patients who had failed cryoablation or radiotherapy. Data was analyzed from 328 patients with a median follow-up of 47.8 months (range: 1.6-203.5). Fifty-five (16.7%) of these patients received subtotal (focal) salvage cryoablation. At five- and ten-years’ follow-up, DFS was 63% and 35%, disease-specific survival (DSS) was 91% and 79%, and OS was 74% and 45%, respectively. After salvage cryoablation, median PSA nadir was 0.2 ng/mL (range: 0.01-70.70 ng/mL) at a median follow-up of 2.6 months (range: 2.0-67.3 months). PSA nadir was the only predictor of recurrence and DSS in multivariate analyses (p<0.001 and p=0.012, respectively). Complications occurred in 0.6-4.6% of patients. In the 55 patients that received subtotal (focal) salvage cryoablation, median PSA nadir was 0.44 ng/mL (range: 0.04-20.1
ng/mL) and recurrence was seen in 27 patients (49%). At five- and ten-years’ follow-up, DFS was 47% and 42%, DSS was 100% and 83%, and OS was 87% and 81%, respectively.

Ng and colleagues reported on a series of 187 patients with locally recurrent prostate cancer after radiotherapy who underwent salvage cryoablation of the prostate and were studied after a mean follow-up of 39 months. Serum PSA at cryoablation was a predictive factor for biochemical recurrence on univariate and multivariate analysis (p <0.001). Patients with a pre-cryoablation PSA value less than 4 ng/mL had a five- and eight-year biochemical recurrence-free survival (bRFS) of 56% and 37%, respectively. In contrast, patients with a pre-cryoablation PSA of 10 ng/mL or greater had a five- and eight-year bRFS of only 1% and 7%, respectively. Patients with a pre-cryoablation PSA in the range of 4 to 9.99 ng/mL had intermediate survival outcomes. Overall five- and eight-year survival was 97% and 92%, respectively. The authors concluded that salvage cryoablation is a viable treatment option for patients with prostate cancer in whom radiation therapy has failed and that salvage cryoablation should be performed when the serum PSA level is still relatively low because, in these patients, the procedure may potentially be curative. Similarly, Ismail and colleagues reported on 100 patients treated between May 2000 and November 2005 with cryoablation for recurrent prostate cancer after radiotherapy; mean follow-up was 33.5 months. All patients had biopsy-confirmed recurrent prostate cancer. bRFS was defined using a PSA level of less than 0.5 ng/mL and by applying the American Society for Therapeutic Radiology and Oncology (ASTRO) definition for biochemical failure. Patients were stratified into three risk groups, i.e., high-risk (68 men), intermediate-risk (20 men), and low-risk (12 men). There were no operative or cancer-related deaths; the five-year actuarial bRFS was 73%, 45%, and 11% for the low-, intermediate- and high-risk groups, respectively. Complications included incontinence (13%), erectile dysfunction (86%), lower urinary tract symptoms (16%), prolonged perineal pain (4%), urinary retention (2%), and recto-urethral fistula (1%). The authors concluded that salvage cryoablation is a safe and effective treatment for localized prostate cancer recurrence after radiotherapy. Williams and colleagues reported on a retrospective review of 176 patients receiving salvage cryoablation for locally recurrent prostate cancer during the period of 1995 to 2004. Patients were followed a mean of 7.46 years, with 52 patients having been followed for more than ten years. The ten-year, disease-free survival (DFS) rate was 39%. The authors found risk factors for prostate cancer recurrence following salvage cryoablation were presalvage PSA levels, preradiation, and presalvage Gleason scores. Early recurrence was highly predicted by PSA nadir greater than 1.0 ng/dL after salvage cryoablation.

Subtotal (Focal) Prostate Cryoablation

There is minimal evidence for use of the technique of subtotal prostate cryoablation for treatment of localized disease. In one representative publication on focal therapy, Truesdale and colleagues reported on a retrospective chart review of 77 patients with unilateral prostate cancer treated with primary focal cryosurgery between 2002 and 2009. Using D'Amico risk classifications, 44 patients were considered low-risk, 31 were intermediate-risk, and two were high-risk disease. Patients were followed for a median time of 24 months, and the biochemical (PSA) progression-free survival rate was 72.7% overall. Prostate cancer was confirmed by biopsy in 10 of 22 patients suspected of having recurrent disease (two ipsilateral, seven contralateral, and one bilateral disease). The overall pathologic progression-free survival rate was 87%. Disease progression was correlated with pretreatment PSA levels, pretreatment...
Gleason scores, number of positive cores, and total tumor lengths. Comparative data from studies with longer follow-up are needed to evaluate this technology.

Bahn and coworkers reported on use of focal prostate cryoablation with “less-than-complete” ablation of the gland with ice, which spares contralateral prostate tissue and surrounding structures. Results on 31 men with a mean follow-up of 70 months showed biochemical disease-free status of 92.8%. Potency (either with or without oral medications) was 88.9%. The authors indicated that further investigation is needed. Bahn and colleagues subsequently reported on a retrospective review of 73 patients with low-intermediate risk, unilateral prostate cancer followed for a median of 3.7 months (range 1-8.5 years) after focal cryotherapy. Mean PSA level decreased 70% from 5.9 ng/mL to 1.6 ng/mL after cryoablation of one lobe (p<0.001). Prostate biopsy was performed in 48 patients after focal cryotherapy and was negative in 36 (75%) patients. Incontinence was not documented in any patient, and impotence was noted in 14% of patients.

Ward and Jones reported on a retrospective review of 1,160 patients with localized prostate cancer treated with focal cryoablation between 1997 and 2007 from the national Cryo On-Line Database (COLD) Registry. At 36 months, the biochemical recurrence-free rate (bDFS) was 75.7%. Prostate biopsy was positive in 43 (26.3%) of 164 patients biopsied for suspected cancer recurrence or 3.7% of all cryoablation patients. Incontinence and impotence were each documented in 1.6% of patients. Six patients (1.1%) experienced urinary retention for more than 30 days.

Summary
Cryoablation, also known as cryotherapy or cryosurgery, of prostate cancer is a technique in which cryoprobes are inserted percutaneously into the prostate gland to rapidly freeze and thaw tissue causing necrosis.

The available evidence for use of cryotherapy in the treatment of clinically localized (organ-confined) prostate cancer when performed as initial treatment or as salvage treatment of disease that recurs following radiation therapy is sufficient to demonstrate improvement in net health outcome. This conclusion is based on the extensive data from cohort studies and clinical input including an indirect chain of evidence and the recognition that the data for this long-used technique are similar to data for a number of accepted techniques. While the data for treatment of recurrence after radiation therapy are limited, these patients have few options; one option with recurrence is prostatectomy, which can be difficult in tissue that has been irradiated. However, for patients with recurrence after radiation therapy who elect further treatment, based on the limited data available, cryosurgical treatment does appear to produce anti-tumor activity.

Given the lack of long-term follow-up data, including a lack of comparative studies, subtotal prostate cryoablation is considered investigational.

Practice Guidelines and Position Statements
The National Comprehensive Cancer Network (NCCN) guidelines for prostate cancer indicate cryosurgery is appropriate for postradiation recurrence in patients who have a positive prostate biopsy and negative studies for metastasis. However, the NCCN guidelines indicate cryotherapy
as primary therapy is not recommended. The discussion notes that there are insufficient data available from long-term studies comparing cryotherapy with radiation and radical prostatectomy.

The 2008 American Urological Association Best Practice Statement has recognized cryoablation of the prostate as an appropriate treatment option for newly diagnosed or radiorecurrent organ-confined prostate cancer. However, this Best Practice Statement indicates cryoablation in patients with clinical T3 disease is undetermined. In addition, long-term results of subtotal prostate cryoablation are noted as being unavailable.

In October 2011, a systematic review of localized prostate cancer treatments prepared for AHRQ to update the 2002 U.S. Preventive Services Task Force Recommendation was published. The review found no studies comparing cryoablation with watchful waiting and no randomized trials or cohort studies evaluating OS or prostate cancer-specific mortality outcomes. The available evidence was mostly from uncontrolled studies and found to be very limited and not sufficiently reliable to estimate the benefits or harms of cryoablation.

In a 2012 comparative effectiveness report from the international Prostate Cancer Results Study Group (PCRSG), PSA-free survival following various prostate cancer treatments, including cryoablation, was noted to be difficult to evaluate, since very few studies comparing results from treatment options were identified. Additionally, variations in methods of evaluating outcomes and reporting results complicated the analysis. No recommendations for cryoablation were made by the PCRSG.

Key Words:
Cryosurgery, Prostate, Cryosurgical Ablation

Approved by Governing Bodies:
Cryoablation of prostate cancer uses available cryoablation systems and, as a surgical procedure, is not subject to regulation by the U.S. Food and Drug Administration (FDA).

A number of cryoablation systems and cryoprobes have general surgical FDA 510(k) marketing clearance. Examples of cryoablation devices that specifically mention treatment of prostate cancer in their marketing clearance are 2 Endocare® Inc. devices, Cryocare CS® and Cryocare CN2® systems, and 2 Galil Medical devices, Visual-ICE® Cryoablation System and IceRod® CX Cryoablation Needle.

Benefit Application:
Coverage is subject to member’s specific benefits. Group specific policy will supersede this policy when applicable.
ITS: Home Policy provisions apply
FEP: Special benefit consideration may apply. Refer to member’s benefit plan.
FEP does not consider investigational if FDA approved and will be reviewed for medical necessity.

Current Codes:

CPT Codes:

55873 Cryosurgical ablation of the prostate (includes ultrasonic guidance for interstitial cryosurgical probe placement)

References:

32. Wenske S, Quarrier S, Katz AE. Salvage Cryosurgery of the Prostate for Failure After Primary Radiotherapy or Cryosurgery: Long-term Clinical, Functional, and Oncologic Outcomes in a Large Cohort at a Tertiary Referral Centre. Eur Urol 2012. [Epub ahead of print]

Policy History:
Medical Policy Group, August 2009 (3)
Medical Policy Administration Committee, September 2009
Available for comment September 18-November 2, 2009
Medical Policy Group, June 2011 (3): Update to Key Points & References; no change to policy statement
Medical Policy Group, June 2012 (3): Update to Key Points & References; no change to policy statement
Medical Policy Panel, May 2013
Medical Policy Group, September 2013 (1): Update to Descriptions, Key Points and References; no change to policy statement
Medical Policy Panel, May 2014
Medical Policy Group, June 2014 (1) Update to Key Points, Governing Bodies and References; no change to policy statement

This medical policy is not an authorization, certification, explanation of benefits, or a contract. Eligibility and benefits are determined on a case-by-case basis according to the terms of the member’s plan in effect as of the date services are rendered. All medical policies are based on (i) research of current medical literature and (ii) review of common medical practices in the treatment and diagnosis of disease as of the date hereof. Physicians and other providers are solely responsible for all aspects of medical care and treatment, including the type, quality, and levels of care and treatment.

This policy is intended to be used for adjudication of claims (including pre-admission certification, pre-determinations, and pre-procedure review) in Blue Cross and Blue Shield’s administration of plan contracts.