Name of Policy:
Radioimmunoscintigraphy Imaging with Indium-111 Capromab Pendetide (ProstaScint®) for Prostate Cancer

Policy #: 249 Latest Review Date: January 2014
Category: Radiology Policy Grade: B

Background/Definitions:
As a general rule, benefits are payable under Blue Cross and Blue Shield of Alabama health plans only in cases of medical necessity and only if services or supplies are not investigational, provided the customer group contracts have such coverage.

The following Association Technology Evaluation Criteria must be met for a service/supply to be considered for coverage:

1. The technology must have final approval from the appropriate government regulatory bodies;
2. The scientific evidence must permit conclusions concerning the effect of the technology on health outcomes;
3. The technology must improve the net health outcome;
4. The technology must be as beneficial as any established alternatives;
5. The improvement must be attainable outside the investigational setting.

Medical Necessity means that health care services (e.g., procedures, treatments, supplies, devices, equipment, facilities or drugs) that a physician, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury or disease or its symptoms, and that are:

1. In accordance with generally accepted standards of medical practice; and
2. Clinically appropriate in terms of type, frequency, extent, site and duration and considered effective for the patient’s illness, injury or disease; and
3. Not primarily for the convenience of the patient, physician or other health care provider; and
4. Not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient’s illness, injury or disease.
Description of Procedure or Service:
Radioimmunoscintigraphy (RIS) involves the administration of radiolabeled monoclonal antibodies (MAbs), which are directed against specific molecular targets, followed by imaging with an external gamma camera. Indium-111 capromab pendetide (ProstaScint®) is a monoclonal antibody directed against a binding site on prostate specific antigen (PSA).

Radioimmunoscintigraphy is an imaging modality that uses radiolabeled monoclonal antibodies to target specific tissue types. MAbs that react with specific cellular antigens are conjugated with a radiolabeled isotope. The labeled antibody-isotope conjugate is then injected into the patient and allowed to localize to the target over a two to seven day period. The patient then undergoes imaging with a nuclear medicine gamma camera, and radioisotope counts are analyzed. Imaging can be performed with planar techniques or by using single-photon emission computed tomography (SPECT).

Indium-111 capromab pendetide (ProstaScint®) (also referred to as CYT-356) targets an intracellular binding site on prostate-specific membrane antigen (PSMA) and has been approved by the U.S. Food and Drug Administration (FDA) for use as a “diagnosing imaging agent in newly diagnosed patients with biopsy-proven prostate cancer, thought to be clinically localized after standard diagnostic evaluation, who are at risk for pelvic lymph node metastases and in post-prostatectomy patients with a rising prostate-specific antigen (PSA) and a negative or equivocal standard metastatic evaluation in whom there is a high clinical suspicion of occult metastatic disease.” Other monoclonal antibodies, directed at extracellular PSMA binding sites, are also under development.

Policy:
Effective for dates of service on or after May 31, 2011:
Radioimmunoscintigraphy using indium-111 capromab pendetide (ProstaScint®) does not meet Blue Cross and Blue Shield of Alabama’s criteria for coverage and is considered investigational.

Blue Cross and Blue Shield of Alabama does not approve or deny procedures, services, testing, or equipment for our members. Our decisions concern coverage only. The decision of whether or not to have a certain test, treatment or procedure is one made between the physician and his/her patient. Blue Cross and Blue Shield of Alabama administers benefits based on the members’ contract and corporate medical policies. Physicians should always exercise their best medical judgment in providing the care they feel is most appropriate for their patients. Needed care should not be delayed or refused because of a coverage determination.

Key Points:
This policy regarding the use of radioimmunoscintigraphy (RIS) in patients with prostate cancer was created in 2002 and was based on a 1998 TEC Assessment. The policy was updated regularly with searches of the MEDLINE database. The most recent literature search was performed for the period of December 2012 through December 12, 2013.
Radioimmunoscintigraphy (RIS) may be considered for use in a number of clinical indications. For the purposes of this policy, two main clinical situations will be considered:

- As part of the pretreatment workup for staging of prostate cancer. In this situation, the value of RIS is in detecting distant metastases that are not evident on other imaging studies, since detection of occult metastases is likely to alter treatment recommendations.
- In patients who have received curative treatment, but present with biochemical failure, i.e., a rising PSA without definite disease on standard imaging studies. In this situation, differentiating between local and distant recurrence is important since local recurrence may be treated with salvage radiotherapy, while distant recurrence is usually treated with androgen deprivation therapy.

Pre-treatment staging prior to curative treatment
Based on the 1998 TEC Assessment of RIS, sensitivity in detecting tumor in the pelvic lymph nodes ranged from 50%–75% and specificity ranged from 72%–92.6%. Pooled data from the studies reviewed in the TEC Assessment produced an estimated 61% positive predictive value. If positive RIS results were used to exclude a patient from receiving potentially curative therapy (i.e., radical prostatectomy) then 38% of patients might be harmed by inappropriately withholding the potentially curative treatment. A pooled negative predictive value of 73% suggests that if radioimmunoscintigraphy played a key role in determining that pelvic lymph nodes were clear of tumor prior to radical prostatectomy, then 26.7% of patients with a negative RIS scan and truly positive lymph nodes might receive potentially ineffective surgery. In addition, there is debate over a potential survival benefit with performing prostatectomy in the setting of positive lymph nodes. Nevertheless, in terms of evaluating the pelvic nodes, the positive and negative predictive values are not sufficiently high enough to avoid pelvic lymph node dissection when necessary to determine patient management.

Since the prior TEC Assessment, several reports have been published that address the role of RIS in evaluating pelvic lymph node staging. However, several of the authors of these reports appear in multiple new and prior publications, and it seems possible that some of these populations overlap with previously reported results derived from multicenter studies. Moreover, the diagnostic accuracy of RIS for evaluating pelvic lymph nodes does not appear to be substantially improved in later reports.

Several of these reports use predictive modeling or cross-sectional correlation analysis to explore the value of RIS results in predicting the extent of disease in comparison to other factors such as prostate-specific antigen (PSA) level, Gleason score, and clinical stage of disease.

In 2011, Reiter et al published a retrospective review of 197 patients who had both RIS and histopathology available at one institution over a four-month period. For the lymph nodes, the sensitivity of RIS was 60.0% (95% confidence interval [CI] 14.7-94.7%) and the specificity was 97.4% (95% CI 92.3-100%). The area under the curve by Receiver Operating Characteristic (ROC) analysis was 78.7%. Increasing Gleason score was predictive of a positive RIS scan, as was the setting of a pretreatment evaluation.

These analyses suggest that RIS provides additional and independent information that correlates with extent of disease; however, the conclusions of these studies are derived from relationships
across populations and do not directly translate into how RIS results would actually be used to guide management in a manner that would improve net health outcome. Without an understanding of diagnostic accuracy and how results would influence management, it is not possible to model potential effects on health outcomes. Thus, none of the reports identified in the update support the clinical effectiveness of using RIS to evaluate pelvic lymph nodes.

Evaluating patients with biochemical failure following prostatectomy or radiotherapy

Patients who experience a rising PSA following curative treatment for prostate cancer are considered to have a recurrence; however, the location of the recurrence is sometimes not evident for a period of time after biochemical failure. Localized recurrence is typically treated with salvage radiotherapy, whereas distant recurrence, i.e. metastatic disease, is usually treated with androgen deprivation therapy.

In terms of evaluating recurrent or residual disease, there are limited data showing that the use of RIS in this patient group can detect additional sites of disease and would result in different management decisions compared to decisions based on usual care. Imaging evaluation may be useful in suspected recurrence due to rising PSA to localize recurrent tumor and to determine whether recurrent tumor is local to the prostate area, involves distant sites, or both. When residual or recurrent disease is only local, patients may undergo postoperative radiation therapy, whereas, when the recurrence includes distant sites, hormonal therapy would be considered. Distant hematogenous metastasis from prostate cancer most frequently involves bone but can infrequently involve other soft tissue sites. Bone scan is generally considered to be more sensitive than RIS for detecting bone metastases. Positive RIS findings have been reported anecdotally in abnormalities other than prostate cancer, so biopsy confirmation of unexpected distant findings may be necessary to ensure proper patient management.

The available studies are generally retrospective, descriptive reports of patterns of RIS uptake in patients with suspected recurrence. These studies, however, do not provide consistent verification of disease status, and thus the rate of false-positive and false-negative RIS studies is not well established. While some studies report what percent of cases had associated changes in management, it is frequently difficult to specifically determine how RIS results affected management and to determine whether these changes resulted in an improvement in net health outcome.

A retrospective study by Raj et al included 252 patients with biochemical failure following radical prostatectomy (PSA <0.4 ng/mL) who had RIS performed to localize recurrence. In this study, 72% of subjects had a positive scan. A localized (prostatic fossa only) uptake pattern was seen in 30.6%, regional uptake pattern (regional lymph nodes plus or minus prostatic fossa and no distant disease) in 42.8%, and distant uptake noted in 29.4%. This study did not report the proportion of subjects in whom patient management was altered by RIS findings. Only a minority of patients (<20%) had also received a computed tomography (CT) scan or bone scan showing positive findings, making comparisons across technologies subject to potential bias. A uniform reference standard was not applied in this study, and detailed follow-up was available for only about half of the patients (132 of 255). The study reports sensitivity and specificity in a small subset of subjects (i.e., 95 of 252 total or 38% of subjects) who had some degree of verification of disease status. Reported sensitivity was 73% and specificity was 53%. However,
due to the selected nature of the small subset analysis, these estimates are subject to potential verification bias and may not be considered valid measures of expected performance.

Sodee et al performed a retrospective analysis on a large multicenter, study including 2,290 RIS scans in 2,154 patients with prostate cancer, either before or after treatment. This study reports the rates of positive RIS scans in local, regional, and distant sites but does not provide detailed verification of results and thus, sensitivity and specificity cannot be determined. When analysis was stratified by whether primary treatment had been surgery, radiation, or hormonal therapy, RIS showed uptake limited to extrapelvic nodes in 8.5% to 15.1% of patients and uptake in both pelvic and extrapelvic nodes in 22.1% to 33.2% of patients. Relatively few patients had also undergone CT scanning (n=146). When CT was compared with RIS, CT did not detect pelvic or extrapelvic nodes that were detected by RIS in 73% of CT cases. In contrast, in a separate study of 45 subjects, RIS did not perform as well as CT in detecting metastatic disease.

Kahn et al reported results in 32 patients who received salvage pelvic radiation for suspected recurrence and had received RIS imaging. The authors reported that RIS had 50% sensitivity, 89% specificity, 78% positive predictive value (PPV), and 70% negative predictive value (NPV) for detecting patients who would develop tumor recurrence after irradiation. Thomas and colleagues reported on the results of RIS in a case series of 30 men with recurrent prostate cancer treated with radiation therapy. This study found no correlation between the results of RIS and tumor control, as assessed by serial PSA levels. Further studies would be necessary to demonstrate that long-term outcomes after radiation therapy are improved when RIS is used to select patients.

Liauw et al reported on 82 patients with adenocarcinoma of the prostate treated with salvage RT for an elevated PSA level after prostatectomy. The median pre-RT PSA level was 0.63ng/mL. Of the 82 patients, 47 (57%) had a pre-RT RIS ProstaScint scan, which was used for both patient selection and target delineation. Patients with a pre-RT RIS scan had a lower preoperative PSA level (p=.0240) and shorter follow-up (p=.0221) than those without RIS. With a median follow-up of 44 months, the biochemical control rate was 56% at three years and 48% at five years. Margin status was the only factor associated with biochemical control on univariate (p=.0055) and multivariate (p=.0044) analysis. Patients who had prostate bed-only uptake on RIS (n=38) did not have improved outcomes, with biochemical control rates of 51% at three years and 40% at five years. This data supports the conclusion that patients who were selected for treatment with RIS did not have better biochemical outcomes.

Nagda et al reported on a series of 58 patients who had ProstaScint scans as part of an assessment of rising PSA after prostatectomy who were then treated with prostate bed radiation therapy. The four-year biochemical relapse-free survival (bRFS) rates for patients with negative ProstaScint scans (53%), positive in the prostate bed alone (45%), or positive elsewhere (74%) scan findings did not differ significantly (p=.51). The capromab pendetide scan status had no effect on bRFS. Those with a pre-radiation therapy (RT) PSA level of less than 1ng/mL had improved bRFS (p=.003). The authors concluded that the capromab pendetide scan has a low PPV in patients with positive elsewhere uptake and the four-year bRFS was similar to that for those who did not exhibit positive elsewhere uptake.
Proano et al reported “early experience” on outcomes among a group of 44 patients with biochemical recurrence after radical prostatectomy who underwent a ProstaScint scan immediately before salvage radiotherapy. They noted an improved prognosis (mean follow-up of 22 months) in patients who had a negative pre-radiotherapy scan but also noted that this finding was not necessarily independent of pre-radiotherapy PSA level.

Two publications raise questions about the accuracy (including sensitivity and specificity) of immunoscintigraphy, co-registered with CT, in imaging localized prostate cancer within the prostate gland and in detecting seminal vesicle invasion. In a prospective evaluation of 93 patients with recurrent prostate cancer, Schuster et al reported positron-emission tomography (PET)-CT with the radiotracer anti-1-amino-3-Fluorocyclobutane-1-carboxylic acid was significantly better in detecting prostatic and extraprostatic prostate cancer recurrence than RIS single-photon emission computed tomography (SPECT)-CT imaging.

Use of RIS scanning to direct “image-guided” radiotherapy
One trial was identified that used the results of ProstaScint to change management. Wong et al prospectively enrolled 71 patients with localized prostate cancer and performed capromab pendetide scans on all prior to initiating intensity-modulated radiation therapy (IMRT) treatment. Areas of increased uptake within the prostate gland on RIS scanning were given an additional “boost” of radiation in addition to the baseline dose given to the entire gland. Grade 2 urinary and gastrointestinal toxicity was common, affecting up to 50% of patients, but Grade 3 or higher toxicity was less frequent, with 4% of patients exhibiting Grade 2 urinary toxicity. At a median of 66 months’ follow-up, biochemical control was 94%. No attempt was made in this study to compare outcomes of “image-guided” IMRT with standard treatment.

2013 Update
There are no new studies in the peer-reviewed literature that discuss the use of radioimmunoscintigraphy in patients with prostate cancer. The policy is unchanged and this remains investigational.

January 2014 Update
A search of clinical trials.gov identified no ongoing trials of the Prostascant or radioimmunoscintigraphy and prostate. The policy is unchanged and this remains investigational.

Summary
Radioimmunoscintigraphy (RIS) imaging with Indium-111 capromab pendetide (ProstaScint) is an alternative imaging modality for patients with prostate cancer that is intended to assist in determining the extent and location of disease. For determining whether disease is present in the lymph nodes, RIS has a modest sensitivity, estimated at 50-75% and a moderate to high specificity, estimated at 72-93%. Because other imaging modalities have a suboptimal sensitivity for disease in the lymph nodes, RIS has been proposed to be used for staging prior to curative treatment. However, no studies have demonstrated that use of RIS for this purpose changes management, and therefore the evidence is insufficient to determine whether RIS improves health outcomes when used to stage prostate cancer pre-treatment.
For patients with biochemical failure following curative treatment, RIS has been proposed to help differentiate between local and distant recurrence. There are numerous small case series that evaluate RIS in this population, and describe rates of positivity for local and distant disease. However, none of these studies demonstrate a change in management as a result of RIS. As a result, it is not possible to determine whether use of RIS in this population improves outcomes. For the above reasons, RIS with In-111 capromab pentetide is considered investigational.

Technology Assessments, Guidelines, Position Statements
Version 1:2011 of the NCCN Guidelines for prostate cancer note a number of changes in the Guideline; this includes removing ProstaScint as a recommendation in the workup of patient with recurrence after prostatectomy and with a recurrence after radiation therapy. No other comments were found in these guidelines when searching for the term ProstaScint.

Key Words:
Capromab Pentetide, Indium-111, ProstaScint®, Radioimmunoscentigraphy

Approved by Governing Bodies:

Benefit Application:
Coverage is subject to member’s specific benefits. Group specific policy will supersede this policy when applicable.

ITS: Home Policy provisions apply.
AT&T contracts: No special consideration.
FEP: Special benefit consideration may apply. Refer to member’s benefit plan. FEP does not consider investigational if FDA approved. Will be reviewed for medical necessity. Pre-certification requirements: Not applicable.

Coding:
CPT Codes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>78800</td>
<td>Radiopharmaceutical localization of tumor or distribution of radiopharmaceutical agent(s); limited area</td>
</tr>
<tr>
<td>78801</td>
<td>Radiopharmaceutical localization of tumor or distribution of radiopharmaceutical agent(s); multiple areas</td>
</tr>
<tr>
<td>78802</td>
<td>Radiopharmaceutical localization of tumor or distribution of radiopharmaceutical agent(s); whole body, single day imaging</td>
</tr>
<tr>
<td>78803</td>
<td>Radiopharmaceutical localization of tumor or distribution of radiopharmaceutical agent(s); tomographic (SPECT)</td>
</tr>
<tr>
<td>78804</td>
<td>Radiopharmaceutical localization of tumor or distribution of radiopharmaceutical agent(s); whole body, requiring 2 or more days imaging</td>
</tr>
</tbody>
</table>
HCPCS:

A9507 Indium In-111 capromab pendetide, diagnostic, per study dose, up to 10 millicuries

References:

34. Tsivian M, Wright T, Price M et al. 111-In-capromab pendetide imaging using hybrid-gamma camera-computer tomography technology is not reliable in detecting seminal vesicle invasion in patients with prostate cancer. Urol Oncol 2010 Feb 27 (Epub ahead of print).

Policy History:
Medical Policy Group, April 2011 (1)
Medical Policy Administration Committee, April 2011
Available for comment April 13 – May 30, 2011
Medical Policy Group, February 2012 (1): Update to Key Points and References related to MPP update; no change in policy statement
Medical Policy Group, May 2013 (4): Update to Key Points.
Medical Policy Panel January 2014
Medical Policy Group January 2014 (4): Updated Key Points and References. There were no changes to the policy at this time.

This medical policy is not an authorization, certification, explanation of benefits, or a contract. Eligibility and benefits are determined on a case-by-case basis according to the terms of the member’s plan in effect as of the date services are rendered. All medical policies are based on (i) research of current medical literature and (ii) review of common medical practices in the treatment and diagnosis of disease as of the date hereof. Physicians and other providers are solely responsible for all aspects of medical care and treatment, including the type, quality, and levels of care and treatment.

This policy is intended to be used for adjudication of claims (including pre-admission certification, pre-determinations, and pre-procedure review) in Blue Cross and Blue Shield’s administration of plan contracts.