Allogeneic Pancreas Transplant

Policy Number: 7.03.02 Last Review: 8/2014
Origination: 8/2001 Next Review: 8/2015

Policy
Blue Cross and Blue Shield of Kansas City (Blue KC) will provide coverage for allogeneic pancreas transplants when it is determined to be medically necessary because the criteria shown below are met.

When Policy Topic is covered
A combined pancreas-kidney transplant may be considered medically necessary in insulin dependent diabetic patients with uremia.

Pancreas transplant after a prior kidney transplant may be considered medically necessary in patients with insulin dependent diabetes.

Pancreas transplant alone may be considered medically necessary in patients with severely disabling and potentially life-threatening complications due to hypoglycemia unawareness and labile insulin dependent diabetes that persists in spite of optimal medical management.

Pancreas retransplantation after a failed primary pancreas transplant may be considered medically necessary in patients who meet criteria for pancreas transplantation.

When Policy Topic is not covered
Procedures not meeting the medical necessity criteria above are considered not medically necessary.

Considerations

General
Potential contraindications subject to the judgment of the transplant center:
1. Known current malignancy, including metastatic cancer
2. Recent malignancy with high risk of recurrence
3. Untreated systemic infection making immunosuppression unsafe, including chronic infection
4. Other irreversible end-stage disease not attributed to kidney disease
5. History of cancer with a moderate risk of recurrence
6. Systemic disease that could be exacerbated by immunosuppression
7. Psychosocial conditions or chemical dependency affecting ability to adhere to therapy

Pancreas Specific
Candidates for pancreas transplant alone should additionally meet 1 of the following severity of illness criteria:
- Documentation of severe hypoglycemia unawareness as evidenced by chart notes or emergency room visits; OR
- Documentation of potentially life-threatening labile diabetes as evidenced by chart notes or hospitalization for diabetic ketoacidosis.
In addition, the vast majority of pancreas transplant patients will have type 1 diabetes mellitus. Those transplant candidates with type 2 diabetes mellitus, in addition to being insulin-dependent, should also not be obese (body mass index [BMI] should be 32 or less). According to International registry data, in 2010, 7% of pancreas transplant recipients had type 2 diabetes. (3)

Multiple Transplants
Although there are no standard guidelines regarding multiple pancreas transplants, the following information may aid in case review:
- If there is early graft loss resulting from technical factors (e.g., venous thrombosis), a retransplant may generally be performed without substantial additional risk.
- Long-term graft losses may result from chronic rejection, which is associated with increased risk of infection following long-term immunosuppression, and sensitization, which increases the difficulty of finding a negative cross-match. Some transplant centers may wait to allow reconstitution of the immune system before initiating retransplant with an augmented immunosuppression protocol.

Pancreas transplants should be considered for coverage under the Transplant Benefit:

Transplant Benefit
The date on which the Transplant Benefit starts accumulating is determined by the transplant coordinator. The Transplant Benefit ends when the Transplant Lifetime Maximum benefit (if applicable) has been exhausted.

Benefits include:
- hospitalization of the recipient for medically recognized transplants from a donor to a transplant recipient;
- evaluation tests requiring hospitalization to determine the suitability of both potential (member's benefits must be verified with regard to the potential donor who does not turn out to be the actual donor) and actual donors, when such tests cannot be safely and effectively performed on an outpatient basis (Note: The member's benefits must be verified with regard to the potential donor who does not turn out to be the actual donor.);
- hospital room, board and general nursing in semi-private rooms;
- special care units, such as coronary and intensive care;
- hospital ancillary services;
- physicians' services for surgery, technical assistance, administration of anesthetics, and medical care;
- acquisition, preparation, transportation, and storage of organ / tissue / cells;
- diagnostic services;
- drugs which require a prescription by federal law;
- medical and surgical care of the donor (related to the procurement of the organ / tissue / cells) if coverage is not available to the donor from any other source. (Covered services provided to a donor will be applied against the recipient's transplant maximum benefit, if applicable)

If the donor and recipient are both listed on the same (family) policy, BCBSKC charges only one deductible and one coinsurance, if applicable.

In addition to the specific organ criteria, transplant candidates must also meet the following general criteria, including, but not limited to:
- Since compliance is a major factor in transplant graft survival, the patient (or legal guardian) must have the ability to accept and understand the transplant procedure and to maintain compliance with long-term medical management and immunosuppression.
- If applicable, patients with a history of malignancy must have passed the recommended length of time to be considered cured for that specific cancer. A complete metastatic evaluation must be performed before a patient will be considered an acceptable transplant candidate.
- Patients with a history of alcohol or substance abuse must have a six month history of abstinence as evidenced by negative urine or serum drug screens taken randomly.
The patient must have adequate cardiopulmonary status.
The patient must be free from active infection.

A covered person is eligible for retransplantation as deemed medically necessary and appropriate by BCBSKC. Review of a retransplantation request will include review of the covered person’s compliance with relevant transplant selection criteria including, but not limited to, adherence to medication regimens, follow-up examinations and abstinence from the use of alcohol and drugs.

The specific member contract should be reviewed for coverage related to donors and recipients, out of network treatment, drugs and other possible limitations or exclusions.

Coverage will **not** be provided for:
- Transplant services when the cost is covered by government, foundation or charitable grants
- The purchase price of organs which are sold rather than donated to the recipient.
- An artificial organ

Clinical trials for conditions other than those allowed in this policy may be available in the research setting. However, these trials are considered investigational and/or experimental and therefore contract exclusions.

Note: There are some state mandates in place that require insurance carriers to cover certain clinical trials under very specific guidelines. Please contact your BCBSKC representative for more information.

Description of Procedure or Service

Transplantation of a normal pancreas is a treatment method for patients with insulin-dependent diabetes mellitus. Pancreas transplantation can restore glucose control and is intended to prevent, halt, or reverse the secondary complications from diabetes mellitus.

Background

Achievement of insulin independence with resultant decreased morbidity and increased quality of life is the primary health outcome of pancreas transplantation. While pancreas transplantation is generally not considered a life-saving treatment, in a small subset of patients who experience life-threatening complications from diabetes, pancreas transplantation could be considered life-saving. Pancreas transplant alone (PTA) has also been investigated in patients following total pancreatectomy for chronic pancreatitis. In addition to the immune rejection issues common to all allograft transplants, autoimmune destruction of beta cells has been observed in the transplanted pancreas, presumably from the same mechanism responsible for type 1 diabetes. (1)

Pancreas transplantation occurs in several different scenarios such as: 1) a diabetic patient with renal failure who may receive a cadaveric simultaneous pancreas/kidney transplant (SPK); 2) a diabetic patient who may receive a cadaveric or living-related pancreas transplant after a kidney transplantation (pancreas after kidney, i.e., PAK); or 3) a non-uremic diabetic patient with specific severely disabling and potentially life-threatening diabetic problems who may receive a PTA. The total number of adult pancreas transplants (pancreas and pancreas/kidney) in the U.S. peaked at 1,484 in 2004; the number has since declined. (2) In 2011, there were 287 pancreas transplants and 795 pancreas/kidney transplants in the U.S.

According to International Registry data, the proportion of pancreas transplant recipients worldwide who have type 2 diabetes has increased over time, from 2% in 1995 to 7% in 2010. (3) In 2010, approximately 8% of SPK, 5% of PAK, and 1% of PTA were performed in patients with type 2 diabetes.

The approach to retransplantation varies according to the cause of failure. Surgical/technical complications such as venous thrombosis are the leading cause of pancreatic graft loss among diabetic patients. Graft loss from chronic rejection may result in sensitization, increasing both the difficulty of finding a cross-matched donor and the risk of rejection of a subsequent transplant. Each center has its
own guidelines based on experience; some transplant centers may wait to allow reconstitution of the immune system before initiating retransplant with an augmented immunosuppression protocol.

Rationale

Literature Review

This policy was created in 1996 and updated regularly with searches of the MEDLINE database. The most recent search was performed for the period January 14, 2013, through January 6, 2014. Much of the published literature consists of case series reported by single centers and registry data. The extant randomized controlled trials compare immunosuppression regimens and surgical techniques and therefore do not address the comparison of pancreas transplantation with insulin therapy, or SPK transplant to insulin therapy and hemodialysis.

This policy is based in part on a 1998 TEC Assessment, which focused on pancreas graft survival and health outcomes associated with both PTA and PAK. A 2001 TEC Assessment focused on the issue of pancreas retransplant. The assessments and subsequent evidence offer the following observations and conclusions:

Pancreas after Kidney Transplant

PAK transplantation allows the uremic patient the benefits of a living-related kidney graft, if available and the benefits of a subsequent pancreas transplant that is likely to result in improved quality of life compared with a kidney transplant alone. Uremic patients for whom a cadaveric kidney graft is available, but a pancreas graft is not simultaneously available benefit similarly from a later pancreas transplant. Based on International Pancreas Registry data reported in 2011, the patient survival rate after PAK was 83% at 5 years posttransplant.

In 2009, Fridell et al reported a retrospective review (n=203) of a single center’s experience with PAK and SPK since 2003, when current induction/tacrolimus immunosuppressive strategies became standard. Of the cases studied, 61 (30%) were PAK and 142 (70%) were SPK. One-year patient survival rates were 98% and 95% (PAK and SPK, respectively; p=0.44). Pancreas graft survival rates at 1 year were observed to be 95% and 90%, respectively (p=0.28). The authors concluded that in the modern immunosuppressive era, PAK should be considered as an acceptable alternative to SPK in candidates with an available living kidney donor.

In 2012, Bazarbachi et al reviewed a single center’s experience with PAK and SPK. Between 2002 and 2010, 172 pancreas transplants were performed in diabetic patients; 123 SPK and 49 PAK. The median length of time between kidney and pancreas transplantation in the PAK group was 4.8 years. Graft and patient survival rates were similar in the 2 groups. Death-censored pancreas graft survival rates for SPK and PAK were 94% and 90% at 1 year, 92% and 90% at 3 years, and 85% and 85% at 5 years (all, p=0.93). Patient survival rates (calculated beginning at the time of pancreas transplantation) in the SPK versus PAK groups were 98.3% and 100% after 1 year, 96.4% and 100% after 3 years, and 94.2% and 100% after 5 years (all, p=0.09).

Kleinclauss et al retrospectively examined data from diabetic kidney transplant recipients (N=307) from a single center and compared renal graft survival rates in those who subsequently received a pancreatic transplant with those who did not. The comparative group was analyzed separately depending on whether they were medically eligible for pancreas transplant, but chose not to proceed for financial or personal reasons, or were ineligible for medical reasons. The ineligible (n=57) group differed significantly at baseline from both the PAK group (n=175) and the eligible group (n=75) with respect to age, type of diabetes, and dialysis experience; kidney graft survival rates were lower than either of the other groups, with 1-, 5-, and 10-year rates of 75%, 54%, and 22%, respectively (p<0.001). The authors compared 1-, 5-, and 10-year kidney graft survival rates in PAK patients with those in the eligible group: 98%, 82%, and 67% versus 100%, 84%, and 62%, respectively, and concluded that the
subsequent transplant of a pancreas after a living donor kidney transplant does not adversely affect patient or kidney graft survival rates.

Simultaneous Pancreas/Kidney (SPK) Transplant

According to International Registry data through 2005, recent 5-year graft survival rates for SPK transplants were 72% for the pancreas and 80% for the kidney. (9) Ten-year graft survival rates reached almost 60% for SPK transplants. The U.S.-based Organ Procurement and Transplant Network (OPTN) reported a 5-year survival rate of 85.5% (95% confidence interval [CI], 84.3% to 86.7%) for SPK procedures performed between 1997 and 2000. (2)

In 2010, Mora et al described the long-term outcome of 12 patients 15 years following SPK transplant. (10) Metabolic measures of glucose control were measured at 1, 5, 10, and 15 years following the procedure. Of this subset of patients, 6 (50%) had nondiabetic glucose challenge tests. Basal serum insulin levels declined over this period as well, from 24 mU/L to 16 mU/L at 1 and 15 years, respectively. The authors conclude that in a select group of patients whose pancreatic graft continued to function after 15 years, some glycemic control continued, albeit in a diminished fashion. It should be noted that this represents a small fraction of the 367 patients receiving the SPK transplant at this single center (12/367 SPK; 3.3%). The number of allograft survivals at 5 or more, and 10 or more years in this study was 43 (11.7%) and 28 (7.6%), respectively.

Pancreas transplant has been found to improve mortality in patients with type 1 diabetes. In 2014, van Dellen et al in the U.K. reported a retrospective analysis of data on 148 SPK patients and a wait-list control group of 120 patients. (11) All patients had uncomplicated type 1 (insulin dependent) diabetes. (The study also included 33 patients who had PAK and 11 PTA patients.) Overall mortality was 30% (30/120 patients) on the waiting list and patients who underwent transplantation had a mortality rate of 9% (20/193 patients); the difference between groups was statistically significant (p<0.001). One-year mortality was 13% (n=16) on the waiting list and 4% (n=8) in the transplant group (p<0.001).

There are some data on outcomes in patients with type 2 compared with type 1 diabetes. In 2011, Sampaio et al published an analysis of data from the United Network for Organ Sharing (UNOS) database. (12) The investigators compared outcomes in 6141 patients with type 1 diabetes and 582 patients with type 2 diabetes who underwent SPK between 2000 and 2007. In adjusted analyses, outcomes were similar in the 2 groups. After adjusting for other factors such as body weight; dialysis time; and cardiovascular comorbidities, type 2 diabetes was not associated with an increased risk of pancreas or kidney graft survival, or mortality compared with type 1 diabetes.

Pancreas Transplant Alone (PTA)

PTA graft survival has improved in recent years. According to International Registry data 1-year graft function increased from 51.5% in 1987-1993 to 77.8% in 2006-2010 (p<0.001). (3) One-year immunologic graft loss remained higher (6%) after PTA than PAK (3.7%) or SPK (1.8%). In carefully selected patients with insulin dependent diabetes mellitus (IDDM) and severely disabling and potentially life-threatening complications due to hypoglycemia unawareness and labile diabetes that persists, despite optimal medical management, the benefits of PTA were judged to outweigh the risk of performing pancreas transplantation with subsequent immunosuppression.

Most patients undergoing PTA are those with either hypoglycemic unawareness or labile diabetes. However, other exceptional circumstances may exist where nonuremic IDDM patients have significant morbidity risks due to secondary complications of diabetes (ie, peripheral neuropathy) that exceed those of the transplant surgery and subsequent chronic immunosuppression. Because virtually no published evidence regarding outcomes of medical management in this very small group of exceptional diabetic patients exists, it is not possible to generalize about which circumstances represent appropriate indications for pancreas transplantation alone. Case-by-case consideration of each patient’s clinical situation may be the best option for determining the balance of risks and benefits.
Noting that nephrotoxic immunosuppression may exacerbate diabetic renal injury after PTA, in 2008 Scalea et al reported a single institutional review of 123 patients who received 131 PTA for development of renal failure.(13) Mean graft survival was 3.3 years (range, 0-11.3), and 21 patients were lost to follow-up. Mean estimated glomerular filtration rate was 88.9 pretransplantation versus 55.6 posttransplantation, with mean follow-up of 3.7 years. All but 16 patients had a decrease in estimated glomerular filtration rate, and mean decrement was 32.1 mg/min/1.73. Thirteen developed end-stage renal disease, which required kidney transplantation at a mean of 4.4 years. The authors suggested that patients should be made aware of the risk and only the most appropriate patients offered PTA. Future updates of this policy will continue to follow this clinical topic.

Pancreas Retransplantation

The OPTN reported data on transplants performed between 1997 and 2004.(2) Patient survival rates after repeat transplants were similar to survival rates after primary transplants. Patient survival rates after repeat transplants were similar to survival rates after primary transplants. For example, the 1-year survival rate was 94.0% (95% CI, 92.6% to 95.3%) after a primary pancreas transplant and 95.6% (95% CI, 92.7% to 98.5%) after a repeat pancreas transplant. The numbers of patients transplanted was not reported, but the OPTN data stated that 1217 patients were alive 1 year after primary transplant and 256 after repeat transplants. Three-year patient survival rates were 89.5% (95% CI, 87.8% to 91.2%) after primary transplants and 89.7% (95% CI, 85.9% to 93.5%) after repeat transplants. One-year graft survival rates were 78.2% (95% CI, 76.0% to 80.5%) after primary pancreas transplants and 70.4% (95% CI, 64.8% to 76.0%) after repeat transplants.

Data are similar for patients receiving combined kidney/pancreas transplants, but follow-up data are only available on a small number of patients who had repeat kidney/pancreas transplants so estimates of survival rates in this group are imprecise. Three-year patient survival rates were 90.0% (95% CI, 89.0% to 91.0%) after primary combined transplant and 79.9% (95% CI, 63.8% to 95.9%) after a repeat combined transplant. The number of patients who were living 3 years after transplant was 2907 after a primary combined procedure and 26 after a repeat combined procedure.

In 2013, Buron et al reported on their experience with pancreas retransplantation in France and Geneva.(14) Between 1976 and 2008, 568 pancreas transplants were performed at 2 centers, including 37 repeat transplants. Patient survival after a repeat pancreas transplant was 100% after 1 year and 89% after 5 years. Graft survival was 64% at 1 year and 46% at 5 years. Among the 17 patients who underwent a second transplant in a later time period, ie, between 1995 and 2007, graft survival was 71% at 1 year and 59% at 5 years. In this more recently transplanted group, graft survival rates were similar to primary pancreas transplants, which was 79% at 1 year and 69% at 5 years.

Pancreas Transplant in HIV+ Transplant Recipients

OPTN policy on Identification of Transmissible Diseases in Organ Recipients states: “Potential candidate for organ transplantation whose test for HIV is positive should not be excluded from candidacy for organ transplantation unless there is a documented contraindication to transplantation based on local policy.”(15)

In 2006, the British HIV Association and the British Transplantation Society Standards Committee published guidelines for kidney transplantation in patients with HIV disease.(16) As described earlier, these criteria may be extrapolated to other organs. The guidelines recommend that any patient with end-stage organ disease with a life expectancy of at least 5 years is considered appropriate for transplantation under the following conditions:

- CD4 count greater than 200 cells/microliter for at least 6 months
- Undetectable HIV viremia (<50 HIV-1 RNA copies/mL) for at least 6 months
- Demonstrable adherence and a stable HAART [highly active antiretroviral therapy] regimen for at least 6 months
Absence of AIDS-defining illness following successful immune reconstitution after HAART.

Age

In 2013, Shah et al reviewed data on 405 patients who underwent PTA between 2003 and 2011.(17) One-year patient survival was 100% for patients younger than age 30, 98% for patients age 30 to 39 years, 94% for patients 40 to 49 years, 95% for patients 50 to 59 years and 93% for patients age 60 or older. There was not a statistically significant difference in the rate of patient survival by age (p=0.38). Findings were similar for 1-year graft survival; there was not a statistically significant difference in outcomes by age of the transplant recipients (p=0.10).

In addition, several 2011 studies addressed pancreas transplantation in individuals 50 years of age or older. A study by Afaneh et al reviewed data on 17 individuals at least 50 years-old and 119 individuals younger than 50 years who had a pancreas transplant at a single institution in the U.S.(18) The 2 groups had similar rates of surgical complications, acute rejection and nonsurgical infections. Overall patient survival was similar. Three- and 5-year survival rates were 93% and 90% in the younger group and 92% and 82%, all consecutively, in the older group. Schenker et al in Germany compared outcomes in 69 individuals at least 50 years-old and 329 individuals younger than 50 years who had received a pancreas transplant.(19) Mean duration of follow-up was 7.7 years. One-, 5-, and 10-year patient and graft survival rates were similar in the 2 groups. For example, the 5-year patient survival rate was 89% in both groups. The 5-year pancreas graft survival rate was 76% in the older group and 72% in the younger group. The authors of both studies, as well as the authors of a commentary accompanying the Schenker article,(20) agreed that individuals age 50 years and older are suitable candidates for pancreas transplantation.

Summary

The literature, consisting primarily of case series and registry data, demonstrate graft survival rates comparable with other solid organ transplants, as well as attendant risks associated with the immunosuppressive therapy necessary to prevent allograft rejection. No randomized controlled trials have compared any form of pancreas transplant with insulin therapy. Pancreas transplant may be considered medically necessary in patients who are undergoing, or have undergone, kidney transplantation for renal failure. It may also be considered medically necessary as a stand-alone treatment in patients with hypoglycemia unawareness and labile diabetes, despite optimal medical therapy and in whom severe complications have developed.

Practice Guidelines and Position Statements

In 2010, the board of directors of Organ Procurement and Transplantation Network/United Network for Organ Sharing approved changes to address concerns related to local variations in the allocation system for pancreas transplant.(21) The policy changes attempt to reduce the discarding of pancreas donations that have been declined in the context of pancreas transplant alone but which may have been utilized if offered in the setting of simultaneous pancreas/kidney transplant. The effect of the policy changes on availability of pancreas donations for transplant alone or in combination with kidney transplants is unknown.

A technology assessment was produced by the Canadian Agency for Drugs and Technology in Health in 2007.(22) The authors did not identify any studies that would contribute additional evidence to this policy. The assessment states: “Given that pancreas transplantation has been widely disseminated for years, it is unlikely that well-designed randomized controlled trials that examine pancreas transplantation will occur because ethical and logical complications will prevent this…Pancreas transplantation is an accepted treatment for patients with type I diabetes and end-stage renal disease (ESRD). This has occurred despite the absence of high quality, robust evidence.”

Medicare National Coverage
Allogeneic pancreas transplant is covered under Medicare when performed in a facility that is approved by Medicare as meeting institutional coverage criteria. The Centers for Medicare and Medicaid Services has made the following national coverage decision regarding pancreas transplant for Medicare recipients.

A. General

Pancreas transplantation is performed to induce an insulin-independent, euglycemic state in diabetic patients. The procedure is generally limited to those patients with severe secondary complications of diabetes, including kidney failure. However, pancreas transplantation is sometimes performed on patients with labile diabetes and hypoglycemic unawareness.

B. Nationally Covered Indications

Effective for services performed on or after July 1, 1999, whole organ pancreas transplantation is nationally covered by Medicare when performed simultaneous with or after a kidney transplant. If the pancreas transplant occurs after the kidney transplant, immunosuppressive therapy begins with the date of discharge from the inpatient stay for the pancreas transplant.

Effective for services performed on or after April 26, 2006, pancreas transplants alone (PA) are reasonable and necessary for Medicare beneficiaries in the following limited circumstances:

1. PA will be limited to those facilities that are Medicare-approved for kidney transplantation.
2. Patients must have a diagnosis of type I diabetes:
 - Patient with diabetes must be beta cell autoantibody positive; or
 - Patient must demonstrate insulinopenia defined as a fasting C-peptide level that is less than or equal to 110% of the lower limit of normal of the laboratory’s measurement method. Fasting C-peptide levels will only be considered valid with a concurrently obtained fasting glucose ≤225 mg/dL;
3. Patients must have a history of medically-uncontrollable labile (brittle) insulin-dependent diabetes mellitus with documented recurrent, severe, acutely life-threatening metabolic complications that require hospitalization. Aforementioned complications include frequent hypoglycemia unawareness or recurring severe ketoacidosis, or recurring severe hypoglycemic attacks;
4. Patients must have been optimally and intensively managed by an endocrinologist for at least 12 months with the most medically-recognized advanced insulin formulations and delivery systems;
5. Patients must have the emotional and mental capacity to understand the significant risks associated with surgery and to effectively manage the lifelong need for immunosuppression; and,
6. Patients must otherwise be a suitable candidate for transplantation.

C. Nationally Noncovered Indications

The following procedure is not considered reasonable and necessary within the meaning of section 1862(a)(1)(A) of the Social Security Act:

Transplantation of partial pancreatic tissue or islet cells (except in the context of a clinical trial (see section 260.3.1 of the National Coverage Determinations Manual).

References

Billing Coding/Physician Documentation Information
48550 Donor pancreatectomy (including cold preservation), with or without duodenal segment for transplantation
48551 Backbench standard preparation of cadaver donor pancreas allograft prior to transplantation, including dissection of allograft from surrounding soft tissues, splenectomy, duodenotomy, ligation of bile duct, ligation of mesenteric vessels, and Y-graft arterial anastomoses from iliac artery to superior mesenteric artery and to splenic artery

48552 Backbench reconstruction of cadaver donor pancreas allograft prior to transplantation, venous anastomosis, each

48554 Transplantation of pancreatic allograft

48556 Removal of transplanted pancreatic allograft

50300 Donor nephrectomy, with preparation and maintenance of allograft, from cadaver donor, unilateral or bilateral

50320 Donor nephrectomy, open from living donor (excluding preparation and maintenance of allograft)

50340 Recipient nephrectomy (separate procedure)

50360 Renal allotransplantation, implantation of graft; excluding donor and recipient nephrectomy

50365 Renal allotransplantation, implantation of graft; with recipient nephrectomy

S2065 Simultaneous pancreas kidney transplant

Additional Policy Key Words

N/A

Policy Implementation/Update Information

8/1/01 New policy added to the Surgery section.
8/1/02 No policy statement changes. Added to the Transplant section.
8/1/03 No policy statement changes.
8/1/04 Policy statement revised to include HIV+ status as investigational. Also added the “severity of illness criteria” to the policy statement.
8/1/05 Policy statement revised to remove HIV+ status as investigational.
4/1/06 No policy statement changes. General criteria added to the Considerations section.
8/1/06 No policy statement changes.
8/1/07 No policy statement changes.
8/1/08 Policy statement revised, removed statement regarding “two or more failed pancreas transplants.”
8/1/09 No policy statement changes.
8/1/10 No policy statement changes.
8/1/11 Not medically necessary indications regarding malignancy, infection and terminal conditions added to policy statement; relative contraindications clarified in Considerations section.
8/1/12 “Not medically necessary” statement removed. Contraindications combined (absolute and relative) and moved to Considerations section. Wording of contraindications changed to be consistent with other solid organ transplant policies.
8/1/13 No policy statement changes.
8/1/14 Statement on retransplantation modified to state that it applies to patients who meet criteria for pancreas transplant.

State and Federal mandates and health plan contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. The medical policies contained herein are for informational purposes. The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents Blue KC and are solely responsible for diagnosis, treatment and medical advice. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, or otherwise, without permission from Blue KC.