Outpatient Pulmonary Rehabilitation

Policy Number: 8.03.05 Last Review: 7/2014

Policy
Blue Cross and Blue Shield of Kansas City (Blue KC) will provide coverage for outpatient pulmonary rehabilitation when it is determined to be medically necessary because the criteria shown below are met.

When Policy Topic is covered
A single course of pulmonary rehabilitation in the outpatient ambulatory care setting may be considered medically necessary for outpatient treatment of chronic pulmonary disease for patients with moderate-to-severe disease who are experiencing disabling symptoms and significantly diminished quality of life in spite of optimal medical management.

A single course of pulmonary rehabilitation may be considered medically necessary in an outpatient ambulatory care setting as a preoperative conditioning component for those considered appropriate candidates for lung volume reduction surgery and for lung transplantation.

When Policy Topic is not covered
Multiple courses of pulmonary rehabilitation are considered investigational, either as maintenance therapy in patients who initially respond or in patients who fail to respond or whose response to an initial rehabilitation program has diminished over time.

Home-based pulmonary rehabilitation programs are considered investigational.

Pulmonary rehabilitation programs are considered investigational in all other situations.

Considerations
Candidates for pulmonary rehabilitation should be medically stable and not limited by another serious or unstable medical condition. Contraindications to pulmonary rehabilitation include severe psychiatric disturbances (e.g., dementia, organic brain syndrome), and significant or unstable medical conditions (e.g., congestive heart failure, acute cor pulmonale, substance abuse, significant liver disease, metastatic cancer, disabling stroke).

A pulmonary rehabilitation outpatient program is a comprehensive program that generally includes team assessment, patient training, psychosocial intervention, exercise training, and follow-up. The overall length of the program and the total number of visits for each component may vary from program to program.

Team assessment includes input from a physician, respiratory care practitioner, nurse, and psychologist, among others.

Patient training includes breathing retraining, bronchial hygiene, medications, and proper nutrition.

Psychosocial intervention addresses support system and dependency issues.
Exercise training includes strengthening and conditioning and may include stair climbing, inspiratory muscle training, treadmill walking, cycle training (with or without ergometer), and supported and unsupported arm exercise training. Exercise conditioning is an essential component of pulmonary rehabilitation. Education in disease management techniques without exercise conditioning does not improve health outcomes of patients who have chronic obstructive pulmonary disease.

Follow-up includes a structured home pulmonary rehabilitation program, and may include supervised home exercise conditioning.

The facility must meet the definition of a hospital outpatient department as follows:

- a physician is on the premises available to perform medical duties at all times, and each patient is under the care of a physician;
- the facility has available for immediate use all the necessary cardiopulmonary emergency diagnostic and therapeutic life saving equipment accepted by the medical community as medically necessary, e.g., oxygen, resuscitation equipment and medications, defibrillator; and
- the program is staffed by personnel who are trained in both basic and advanced cardiac life support techniques and in exercise therapy for pulmonary disease.

The following services are considered component parts of the pulmonary rehabilitation program and are not eligible for separate reimbursement:

- Education and counseling related to diet, nutrition, stress, psychological problems, sexual activity, etc.
- Stress management

Description of Procedure or Service

Pulmonary rehabilitation (PR) is a multidisciplinary approach to reducing symptoms and improving quality of life in patients with compromised lung function. The approach can be used in patients with chronic pulmonary disease and as preoperative conditioning before lung surgery.

The American Thoracic Society (ATS) and the European Respiratory Society (ERS) define pulmonary rehabilitation (PR) as "an evidence-based, multidisciplinary, and comprehensive intervention for patients with chronic respiratory diseases who are symptomatic and often have decreased daily life activities. Integrated into the individualized treatment of the patient, pulmonary rehabilitation is designed to reduce symptoms, optimize functional status, increase participation, and reduce health care costs through stabilizing or reversing systemic manifestations of the disease. Comprehensive pulmonary rehabilitation programs include patient assessment, exercise training, and psychosocial support.” (1)

Pulmonary rehabilitation programs are intended to improve the patient’s functioning and quality of life. The vast majority of study has focused on patients with chronic obstructive pulmonary disease (COPD), although there has been some interest in PR in patients with asthma, cystic fibrosis, or bronchiectasis. According to a joint ATS/ERS (American Thoracic Society/European Respiratory Society) statement issued in 2006, pulmonary rehabilitation may be of value for conditions other than COPD in cases in which respiratory symptoms are associated with diminished functional capacity or reduced health-related quality of life.

Pulmonary rehabilitation is also routinely offered to patients awaiting lung transplantation and lung volume reduction surgery (LVRS). PR before lung surgery may stabilize or improve patients’ exercise tolerance, teach patients techniques that will help them recover after the procedure, and allow healthcare providers to identify individuals who might be suboptimal surgical candidates due to non-compliance, poor health, or other reasons.

Regulatory Status

Not applicable
Rationale
The original policy issued in July 1996 was based on a TEC Assessment.(2) The policy was updated regularly with searches of the MEDLINE database. The most recent literature search was performed for the period November 2012 through November 21, 2013. Following is a summary of the literature to date.

Initial course of pulmonary rehabilitation programs for patients with chronic pulmonary disease

Patients with Chronic Obstructive Pulmonary Disease

Numerous randomized controlled trials (RCTs) and several systematic reviews of RCTs have been published. A 2011 Cochrane review by Puhan et al included studies on the effect of outpatient or inpatient pulmonary rehabilitation (PR) following an acute exacerbation of chronic obstructive pulmonary disease (COPD).(3) To be included, the rehabilitation program needed to begin within 3 weeks of initiating exacerbation treatment and had to include physical exercise. Nine trials with a total of 432 participants met inclusion criteria. Rehabilitation was outpatient in 4 trials, inpatient in 4 trials, and the fifth trial included both in- and outpatient rehabilitation. In a pooled analysis of 5 trials, there was a statistically significant reduction in the primary outcome, rate of hospital admissions, with PR compared to usual care (odds ratio [OR], 0.22; 95% confidence interval [CI], 0.08 to 0.58). Secondary outcomes also favored the PR group. For example, there was also a significant reduction in mortality with PR when findings from 3 studies were pooled (OR=0.28; 95% CI, 0.10 to 0.84). In addition, in a pooled analysis of 6 studies, there was a greater change from baseline in the 6-minute walk distance (6MWD) with PR (mean difference, 77.7 m; 95% CI, 12.1 to 143.2).

In 2011, Beauchamp et al conducted a systematic review of trials on PR for COPD, with the aim of determining the optimal duration of rehabilitation programs.(4) Five studies met the inclusion criteria. Studies needed to be randomized and compare different lengths of rehabilitation, and more than 90% of patients in the study needed to be diagnosed with COPD. A pooled analysis of findings was not possible due to heterogeneity of PR program duration and outcome measures. Three of the trials reported a significant difference in quality of life (QOL) in favor of the longer programs. The length of programs was 18 months versus 3 months in 2 studies and 7 weeks versus 4 weeks in the third study. In the other 2 trials, there was not a statistically significant difference between groups.

A 2013 systematic review by Jacome et al searched for studies on PR in patients with mild COPD.(5) They identified only one RCT, which was determined to be insufficient evidence to support PR programs in this population.

Representative RCTs conducted in patients with moderate to severe COPD are described below. Of interest, PR programs differed, both in the individual components of the program and its duration. For example, the programs ranged in length from 6 weeks to 6 months. In addition, all the randomized studies were conducted outside the United States, and thus conclusions regarding the structure of a PR program may not be applicable to the U.S. health care system.

Guell et al reported on the results of a study that randomly assigned 60 patients with COPD to undergo PR or standard care.(6) The specific focus of the study was to examine the long-term effects (24 months) of the PR program. The patients received breathing retraining in the first 3 months followed by exercise training in the next 3 months. The improvement in both symptoms and QOL noted at 3 months after completion of the program continued with somewhat diminished magnitude in the second year of follow-up.

Wedzicha et al examined the effects of a PR program in patients with moderately severe and severe COPD who were randomly assigned to receive an 8-week program of PR or standard care.(7) Patients with severe COPD were treated at home. While significant improvement was noted in exercise performance and QOL among those with moderately severe COPD assigned to the PR program, no improvement was found in those with severe COPD.
A trial by van Wetering et al focused on patients with less advanced COPD.(8) They randomly assigned 199 patients with average moderate airflow obstruction but impaired exercise capacity (peak work load <70% predicted normal) to a 4-month PR program or usual care. At the end of the intervention, the PR group had significantly greater improvement in the St. George’s Respiratory Questionnaire (SGRQ) total score, a mean reduction of 3.9 points in the PR group, and an increase of 0.3 point in the usual care group. At 12 months, the SGRQ score had almost returned to baseline in the PR group; it remained stable in the usual care group. A total of 156 of 199 (79%) participants completed the 24-month follow-up. After 24 months, the total SGRQ score was slightly higher than baseline in the usual care group and lower than baseline in the PR group, a statistically significant 2.6 unit mean difference (p=0.045).

A 2013 trial by Roman et al in Spain randomized 97 patients to 1 of 3 groups: PR for 3 months followed by 12 months of rehabilitation maintenance, PR for 3 months only, and usual care.(9) Participants had moderate COPD according to GOLD criteria. The PR program was conducted in an ambulatory care setting and included education, respiratory physiotherapy and muscle training. The prespecified primary outcome was change in the Spanish validated version of the Chronic Respiratory Questionnaire (CRQ) at 3 and 12 months. A change of 0.5 points per item was considered to represent a clinically significant change in the score. At 12 months, there was not a statistically significant difference between groups in any of the 4 dimensions of the CRQ (ie, dyspnea, fatigue, emotional function, or mastery). At 3 months, the only statistically significant difference was between the PR only and control group on the dyspnea dimension and this favored the control group. There were no statistically significant differences between groups on secondary outcomes including the 6-minute walk test (6MWT) and forced expiratory volume in 1 second (FEV1).

Section summary

Multiple RCTs and meta-analyses of RCTs have been published and, for the most part, these have found improved outcomes (ie, functional ability and QOL) in patients with moderate to severe COPD who undergo a comprehensive PR program in the outpatient setting. There is limited evidence on the efficacy of repeated and/or prolonged PR programs, and the available evidence is mixed on whether these programs lead to additional health outcome benefits.

Patients with other chronic respiratory diseases

Patients with chronic lung diseases other than COPD have not been studied as extensively as those with COPD, in large part because the lower prevalence of these disorders. No RCTs evaluating comprehensive PR programs in this population were identified. There are several published case series and comparative observational studies.

For example, in a prospective study published in 2010, Kozu et al compared outcomes in 2 cohorts of patients that participated in an identical 8-week outpatient PR program in Japan.(10) The study included 45 patients with idiopathic pulmonary fibrosis (IPF), and these were matched by age and disease severity to 45 COPD patients. A total of 36 of 45 (80%) IPF patients and 40 of 45 (89%) completed the program. At the end of the program, each group experienced statistically significant increases in exercise capacity (distance walked in 6 minutes), improvement in dyspnea (lower dyspnea grade), and an increase in the activities of daily living (ADL) score compared with baseline. The COPD group, but not the IPF group, also had statistically significant increases in health status as measured by the SF-36. Six-month follow-up data were available for 30 of 45 (67%) of IPF patients and 37 of 45 (82%) of COPD patients. Comparing the 2 groups at 6 months, patients in the COPD group had significantly greater exercise capacity, greater improvement in dyspnea, and higher ADL scores compared to the IPF group.

In 2011, Ong et al in Australia retrospectively compared findings in patients with bronchiectasis (n=69) and an age- and gender-matched group of patients with COPD who attended an outpatient PR
program. (11) During the 12-month follow-up period, the 2 diagnosis groups did not differ significantly on the primary outcome measures, 6MWD (p=0.20) and score on the CRQ (p=0.7). At the 12-month follow-up, the mean between-group difference in 6MWD was 16.1 meters (95% CI, -15.0 to 47.1), and the mean between-group difference in the CRQ was -1.3 points (95% CI, -10.1 to 8.3). This study was not designed to evaluate whether patients with bronchiectasis benefit from PR programs (eg, it did not compare PR to usual care).

Section summary

No published RCTs were identified that evaluated PR programs in patients with chronic respiratory diseases other than COPD. Observational data suggest that outcomes in patients with other respiratory conditions may benefit, but likely not as much as COPD patients.

Home-based PR programs

Evaluation of home-based PR programs involves searching for evidence that these are at least as effective as programs conducted in the ambulatory care setting. The programs also need to be comprehensive PR programs and be feasible in the context of the U.S. health care system.

Several RCTs and systematic reviews of RCTs have been published on home-based PR programs. Among the systematic reviews, Liu et al in 2013 identified 18 RCTs evaluating home-based PR programs.(12) Most studies compared PR to usual care and none of the included trials compared home-based and clinic-based programs. Only 2 of the 18 studies were conducted in the U.S. and both of those were published in the 1990s. The studies reported different outcomes over different timeframes, and pooled analysis only included data from 2 to 4 studies. For example, a pooled analysis of 3 studies with a total of 112 patients reporting the SGRQ total score found statistically significant improvement in symptoms with home-based PR compared to control (effect size, -11.33; 95% CI, -16.37 to -6.29). A pooled analysis of data from 4 studies (N=167) found a significantly increased 6MWD after 12 weeks in the PR group compared to control (effect size, 35.9; 95% CI, 9.4 to 62.4). The latter analysis had a wide CI, indicating that there is not a precise estimate of effect size.

Previously, a 2010 systematic review by Vieira et al identified 12 RCTs comparing home-based PR to PR in another setting or to standard care in patients with COPD.(13) The comparison intervention in 3 studies was a hospital-based program, in 8 studies was standard care, and 1 study had both types of comparisons. The methodologic quality of the studies was considered to be average to poor, and most had small sample sizes and relatively short follow-up duration. The authors did not pool study findings and findings of individual studies were mixed. Three studies that compared home-based PR to standard care reported data on between-group differences in QOL; in all 3 studies, differences were reported as statistically significant. The 2 studies that reported differences in exercise capacity found home-based PR to result in significantly greater improvement in the 6MWD or constant work rate test than standard care. On the other hand, in the 3 studies comparing home-based PR and hospital-based programs, there were no statistically significant differences between groups in quality-of-life changes. Moreover, in the 2 studies that assessed maximal work level and the 2 studies that assessed the 6MWT, outcomes did not differ significantly after home-based or hospital-based PR programs. The authors commented that the review was limited by the generally low quality of the randomized trials and that most studies had only short-term follow-up.

A study with a relatively large sample size, and that compared home-based PR to outpatient clinic-based PR was published by Maltais et al in 2008.(14) This was a noninferiority trial and was conducted in Canada. Eligibility criteria included stable COPD for at least 4 weeks before study participation and no previous participation in PR programs; 252 patients were included. All patients initially completed a 4-week self-management educational program. They were then randomized to receive 8 weeks of either self-monitored home-based exercise training or outpatient hospital-based exercise training. The exercise program included aerobic and strength exercises conducted 3 times per week. Patients were followed up for 40 weeks after completion of the exercise program. Both interventions produced similar
improvements in the CRQ Dyspnea subscale at 1 year: improvement in dyspnea of 0.62 (95% CI, 0.43 to 0.80) units in the home intervention (n=107) and 0.46 (95% CI, 0.28 to 0.64) units in the outpatient intervention (n=109). The difference between treatments at 1 year was considered clinically unimportant. The study did not evaluate a comprehensive PR program.

Section summary

Most studies of home-based PR compared outcomes with standard care. There are very few studies that compare home-based PR with hospital or clinic-based PR and the available studies are mostly of low quality. Therefore, there is insufficient evidence that comprehensive PR programs conducted in the home setting are at least as effective as comprehensive PR programs in the ambulatory care setting.

Repeat and maintenance PR programs for patients with COPD

Both repeat and maintenance PR programs provide additional rehabilitation services after initial participation in a PR program. Program categories are not strictly defined but repeat programs are generally considered to be those that include patients who failed to respond to an initial program or whose response to an initial rehabilitation program has diminished over time. In contrast, maintenance programs tend to be those designed to maintain the effects of the initial PR program, and they are open to all patients who successfully completed an initial program.

One RCT was identified that evaluated a repeat PR program. Carr et al in Canada prospectively identified patients with moderate to severe COPD who experienced an acute exacerbation within 12 months of participating in a PR program.(15) Initially, patients completed either a 6-week inpatient program or a 12-week outpatient program. The repeat PR program lasted 3 weeks and consisted of exercise and education; patients could choose inpatient or outpatient versions. Over 6 months, a total of 41 patients developed an exacerbation and 12 did not have an exacerbation. Seven patients withdrew from the study, and the remaining 34 were randomly assigned to receive a repeat PR program within 1 month of the exacerbation (n=17) or no repeat PR program (n=17). One patient in the intervention group dropped out; of the remaining 33 patients, 25 (76%) experienced an exacerbation of moderate severity; the remaining 8 had severe exacerbations. Nine of 16 patients (56%) remaining in the intervention group chose an inpatient program and 7 chose an outpatient program. Patients were assessed before the repeat PR program, immediately after the program (3 weeks later), and again 12 weeks after the beginning of the exacerbation (approximately 5 weeks after completing the repeat rehabilitation program). The primary outcome was change in health-related HRQOL, as measured by the CRQ, a validated measure with 4 domains. There was no statistically significant difference between groups in change in CRQ scores. Among patients in the intervention group, the magnitude of improvement in the domains of dyspnea (0.7±1.5 points) and fatigue (0.5±1.3 points) met or exceeded the minimum clinically important difference (MCID). In the control group, the magnitude of change in all dimensions did not meet the MCID. Change in the 6MWD, a secondary outcome, was not significantly different between groups at either follow-up time. Outcomes were not reported separately for patients who chose inpatient versus outpatient programs (the policy addresses outpatient programs). The authors recommended that future evaluations of repeat PR programs include patients with more serious exacerbations, last longer than 3 weeks, and start as close in time as possible to the exacerbation. Conclusions about repeat PR programs cannot be drawn from 1 study with a small sample size.

In 2012, an Ontario Health Technology Assessment was published on PR for patients with COPD.(16) The review identified 3 RCTs (total of 284 participants) evaluating maintenance PR programs for individuals with COPD who successfully completed an initial PR program. The studies excluded patients who had experienced a recent acute exacerbation of COPD. The maintenance programs all consisted of supervised exercise sessions; program duration was 3 months in 1 program and 12 months in the other 2 programs. One program also included an unsupervised exercise component, and 1 included educational sessions. The reviewers judged the quality of the studies as generally poor due to methodologic limitations such as inadequate information on randomization, allocation concealment
and blinding and lack of clarity around the use of an intention-to-treat analysis. In a pooled analysis of data from 2 of the studies (total n=168), there was a significantly greater 6MWD in patients who participated in the maintenance program compared to those in a control group (mean difference, 22.9 meters; 95% CI, 5.2 to 40.7). The CI was wide, indicating lack of precision in the pooled estimate. In addition, the review authors considered the minimal clinically important difference in meters walked to be 25 to 35 meters, and the meta-analysis of study findings did not meet this threshold of difference between groups.

Section summary

A few small RCTs have been performed that evaluate repeat or maintenance rehabilitation programs. Due to the small number of RCTs, methodologic limitations of available studies, and lack of clinically significant findings, the evidence to determine the effect of repeat and maintenance PR programs on health outcomes in patients with COPD is insufficient.

PR programs prior to lung surgery

PR prior to lung volume reduction surgery (LVRS) represents a distinct subset of patients with COPD, and the National Emphysema Treatment Trial (NETT) requires all candidates to undergo a vigorous course of PR. The final results of the NETT Trial support treatment effectiveness in a subset of patients with COPD.(17)

Several small RCTs have been published evaluating preoperative PR for patients undergoing lung cancer resection. In 2012, Morano et al published a single-blind study that was conducted in Brazil.(18) Patients were randomly assigned to receive 4 weeks of PR (exercise-only, 5 sessions per week) or chest physical therapy; there were 12 patients in each group. All patients in the PR group and 9 of 12 in the chest physical therapy group subsequently underwent surgery (the other 3 patients were found to have inoperable disease). Several postoperative outcomes were assessed. Patients in the PR group spent significantly fewer days in the hospital than patients in the chest physical therapy group (mean, 7.8 vs 12.2 days, p=0.04). In addition, patients in the PR group spent fewer days with chest tubes than the physical therapy group (mean, 4.5 vs 7.4 days, p=0.03). The study did not assess longer-term functional outcomes after surgery.

In 2011, Benzo et al published findings of 2 small exploratory RCTs evaluating PR prior to lung cancer resection.(19) Eligibility criteria included having moderate to severe COPD and being scheduled for lung cancer resection either by open thoracotomy or video-assisted thoracoscopy. The first study had poor recruitment and was only able to enroll 9 patients. The second study enrolled 19 patients in either a 10-session preoperative PR program (n=10) or usual care (n=9).

The mean (SD) number of days in the hospital was 6.3 (3.0) in the PR group and 11.0 (6.3) in the control group (p=0.058). A total of 3 patients (33%) in the PR group and 5 patients (63%) in the control group experienced postoperative pulmonary complications (p=0.23). The study likely had too small a sample size to detect statistically and clinically significant differences between groups. The authors recommended that a larger multicenter randomized trial be conducted in this population of patients. In 2013, a non-RCT on PR for patients undergoing lung cancer surgery was identified. The study, by Bradley and colleagues in the U.K., evaluated an outpatient-based PR intervention in 58 lung cancer patients who were candidates for surgery.(20) The investigators also evaluated a comparison group of 305 patients, also surgical candidates, who received usual care. Patients in the 2 groups were matched for age, lung function, comorbidities, and type of surgery. In a within-group analysis, there was a statistically significant improvement in the 6MWT of 20 meters in the intervention group before and after participation in a 4-session presurgical PR program. In between-group analyses, there were not statistically significant differences between the intervention and comparisons groups in clinical outcomes such as postoperative pulmonary complications, readmissions, and mortality following surgery.
Section summary

There is a lack of large RCTs comparing PR with no PR for preoperative candidates undergoing LVRS, lung transplantation, or lung cancer resection. However, the National Emphysema Trial (NETT) required PR prior to lung volume reduction surgery: PR is standard of care prior to LVRS and lung transplantation. The few small RCTs and observational studies published to date on PR prior to lung cancer resection did not find consistent evidence of benefit.

Ongoing Clinical Trials

Pulmonary Rehabilitation in Interstitial Lung Diseases (NCT01198288)(21): This trial from Belgium is randomizing patients with interstitial lung disease to receive 6 months of PR or usual care. The primary study outcome is change in 6MWD after 6 months. The expected sample size is 60 patients.

Effects of Home-based Pulmonary Rehabilitation in Patients With Severe or Very Severe Chronic Obstructive Pulmonary Disease (COPD) (NCT01198288)(22): The study, conducted in Italy, is randomizing patients with COPD to receive standard care only (medication, information about exercise, and monthly check-in calls) or standard care plus 10 in-home supervised PR sessions. The primary outcome is the distance walked test, and secondary outcomes include QOL, dyspnea, and COPD relapse rate. Estimated enrollment is 182 patients.

Benefits and Costs of Home-based Pulmonary Rehabilitation in Chronic Obstructive Pulmonary Disease (HomeBase) (NCT01423227)(23): This study, conducted in Australia, is randomizing 144 patients with COPD to a hospital-based PR program or a home-based PR program. The primary outcome is change in 6MWD at 8 weeks and at 12 months. The expected completion date is October 2014.

Summary

The literature supports the conclusion that a comprehensive pulmonary rehabilitation (PR) program in the outpatient ambulatory care setting in patients with moderate to severe chronic respiratory disease is associated with improved symptoms and quality of life. Although there have been many randomized trials, the structure of PR programs is variable, so it is not possible to provide further guidance regarding the optimal components of a PR program or its duration. There are insufficient data to conclude whether a comprehensive home-based PR program is at least as effective at improving the net health outcome compared to PR provided in the ambulatory care setting. Thus, a single course of PR may be considered medically necessary in the ambulatory care setting for patients with moderate to severe chronic pulmonary disease who meet criteria and investigational in the home setting. There are insufficient data focusing on programs designed to maintain the benefits of a PR program or evaluate repeat PR programs. Thus, repeat and maintenance PR programs are considered investigational.

For patients undergoing lung surgery, findings from the National Emphysema Treatment Trial suggest a subset of chronic obstructive pulmonary disease (COPD) patients who are appropriate candidates for PR prior to lung volume reduction surgery. For patients undergoing lung transplantation, PR is considered standard of care to maximize preoperative pulmonary status. For patients undergoing lung cancer resection, there are a few small RCTs but these trials have not demonstrated a consistent benefit of PR on health outcomes. Therefore a single course of PR in an outpatient setting is considered medically necessary for patients prior to lung resection surgery or lung transplantation.

Practice Guidelines and Position Statements

A 2013 joint statement on PR was issued by the American Thoracic Society (ATS) and the European Respiratory Society (ERS).(1) The statement included the following relevant conclusions:
- PR provided to patients with respiratory disease other than COPD has demonstrated improvement in respiratory symptoms, exercise tolerance and quality of life.
- Appropriately designed home-based exercise training has been found to be effective at reducing dyspnea and increasing exercise performance in patients with COPD.

A 2013 guideline on PR in adults by the British Thoracic Society includes the following recommendations(24):

- PR should be offered to patients with COPD to improve exercise capacity, dyspnea, health status and psychological wellbeing.
- PR programs of 6 to 12 weeks’ duration are recommended. A minimum of 12 supervised sessions are recommended, although some patients may gain benefit from fewer sessions.
- If considering a home-based program, the following factors need careful consideration: patient selection, means of providing remote support and/or supervision and provision of home exercise equipment.

A 2011 joint guideline on management of COPD was issued by the American College of Physicians (ACP), the American College of Chest Physicians (ACCP), the ATS, and the ERS(25): The guideline recommends that “clinicians should prescribe pulmonary rehabilitation for symptomatic patients with an [forced expiratory volume] FEV <50% predicted (Grade: strong recommendation, moderate-quality evidence). Clinicians may consider pulmonary rehabilitation for symptomatic or exercise-limited patients with an FEV >50% predicted (Grade: weak recommendation, moderate-quality evidence).”

In 2007, a joint guideline on PR was issued by the American College of Chest Physicians (ACCP) and the American Association of Cardiovascular and Pulmonary Rehabilitation (AACVPR).(26) The panel issued a number of recommendations. Following are the strong recommendations based on strong (1A) or moderate (1B) evidence:

Grade of Recommendation 1A

- A program of exercise training of the muscles of ambulation is recommended as a mandatory component of pulmonary rehabilitation for patients with COPD.
- Pulmonary rehabilitation improves the symptom of dyspnea and improves health-related quality of life in patients with COPD.
- Six to 12 weeks of pulmonary rehabilitation produces benefits in several outcomes that decline gradually over 12 to 18 months.
- Both low- and high-intensity exercise training produce clinical benefits for patients with COPD. Unsupported endurance training of the upper extremities is beneficial in patients with COPD and should be included in pulmonary rehabilitation programs.

Grade of Recommendation 1B

- Lower-extremity exercise training at higher exercise intensity produces greater physiologic benefits than lower-intensity training in patients with COPD. The scientific evidence does not support the routine use of inspiratory muscle training as an essential component of pulmonary rehabilitation.
- Education should be an integral component of pulmonary rehabilitation. Education should include information on collaborative self-management and prevention and treatment of exacerbations.
- Pulmonary rehabilitation is beneficial for some patients with chronic respiratory diseases other than COPD.

References
5. Jacome CI, Marques AS. Pulmonary rehabilitation for mild chronic obstructive pulmonary disease: a systematic review. Respir Care 2013.
22. Sponsored by Associazione Riabilitatori Insufficienza Respiratoria (Italy). Effects of Home-based Pulmonary Rehabilitation in Patients With Severe or Very Severe Chronic Obstructive Pulmonary Disease (COPD) (NCT01198288). Available online at: www.clinicaltrials.gov

Billing Coding/Physician Documentation Information

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0237</td>
<td>Therapeutic procedures to increase strength or endurance of respiratory muscles, face-to-face, one-on-one, each 15 minutes (includes monitoring)</td>
</tr>
<tr>
<td>G0238</td>
<td>Therapeutic procedures to improve respiratory function, other than described by G0237, one-on-one, face-to-face, per 15 minutes (includes monitoring)</td>
</tr>
<tr>
<td>G0239</td>
<td>Therapeutic procedures to improve respiratory function or increase strength or endurance of respiratory muscles, two or more individuals (includes monitoring)</td>
</tr>
<tr>
<td>G0302</td>
<td>Preoperative pulmonary surgery services for preparation for LVRS, complete course of services, to include a minimum of 16 days of services</td>
</tr>
<tr>
<td>G0303</td>
<td>Preoperative pulmonary surgery services for preparation for LVRS, 10 to 15 days of services</td>
</tr>
<tr>
<td>G0304</td>
<td>Preoperative pulmonary surgery services for preparation for LVRS, 1 to 9 days of services</td>
</tr>
<tr>
<td>G0305</td>
<td>Postdischarge pulmonary surgery services after LVRS, minimum of 6 days of services</td>
</tr>
<tr>
<td>G0424</td>
<td>Pulmonary rehabilitation, including exercise (includes monitoring), per hour, per session</td>
</tr>
<tr>
<td>S9473</td>
<td>Pulmonary rehabilitation program, nonphysician provider, per diem</td>
</tr>
</tbody>
</table>

The component services may be reported separately using CPT codes such as 97110 and 97530, or an unlisted code such as 94799 or 97799 may be reported.

Additional Policy Key Words

N/A

Policy Implementation/Update Information

<table>
<thead>
<tr>
<th>Date</th>
<th>Updates</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/1/95</td>
<td>New policy.</td>
</tr>
<tr>
<td>7/1/00</td>
<td>No policy statement changes. Prior authorization is required.</td>
</tr>
<tr>
<td>7/1/01</td>
<td>Policy statement revised to include all services to be provided by the pulmonary rehabilitation program in excess of twelve weeks will require additional approval through the prior authorization department.</td>
</tr>
<tr>
<td>7/1/02</td>
<td>No policy statement changes.</td>
</tr>
<tr>
<td>1/1/03</td>
<td>Prior authorization requirement is removed.</td>
</tr>
<tr>
<td>7/1/03</td>
<td>No policy statement changes.</td>
</tr>
<tr>
<td>7/1/04</td>
<td>Prior authorization requirement for rehabilitation in excess of 12 weeks is removed.</td>
</tr>
<tr>
<td>7/1/05</td>
<td>No policy statement changes.</td>
</tr>
<tr>
<td>7/1/06</td>
<td>No policy statement changes.</td>
</tr>
<tr>
<td>7/1/07</td>
<td>No policy statement changes.</td>
</tr>
<tr>
<td>7/1/08</td>
<td>Policy statement revised to indicate pulmonary rehabilitation may be considered medically necessary in those with moderate to severe chronic lung disease and also in lung transplant surgery. “Outpatient” added to the policy title.</td>
</tr>
<tr>
<td>7/1/09</td>
<td>No policy statement changes.</td>
</tr>
<tr>
<td>7/1/10</td>
<td>No policy statement changes.</td>
</tr>
<tr>
<td>7/1/11</td>
<td>Policy statement on home-based pulmonary rehabilitation programs added; existing</td>
</tr>
</tbody>
</table>
medically necessary policy statements edited to clarify that outpatient programs refer to those in the ambulatory care setting.

7/1/12 No policy statement changes.
7/1/13 No policy statement changes.
7/1/14 Statement added that pulmonary rehabilitation programs are considered investigational in all other situations. Added ‘component services’ in coding section.

State and Federal mandates and health plan contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. The medical policies contained herein are for informational purposes. The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents Blue KC and are solely responsible for diagnosis, treatment and medical advice. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, or otherwise, without permission from Blue KC.