Hematopoietic Stem-Cell Transplantation for Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma

Policy
Blue Cross and Blue Shield of Kansas City (Blue KC) will provide coverage for hematopoietic stem-cell transplantation for chronic lymphocytic leukemia and small lymphocytic lymphoma when it is determined to be medically necessary because the criteria shown below are met.

When Policy Topic is covered
Allogeneic hematopoietic stem-cell transplantation may be considered medically necessary to treat chronic lymphocytic leukemia or small cell lymphocytic lymphoma in patients with markers of poor-risk disease (see Considerations section). Use of a myeloablative or reduced-intensity pretransplant conditioning regimen should be individualized based on factors that include patient age, the presence of comorbidities, and disease burden.

When Policy Topic is not covered
Allogeneic hematopoietic stem-cell transplantation is considered investigational to treat chronic lymphocytic leukemia or small lymphocytic lymphoma except as noted above.

Autologous hematopoietic stem-cell transplantation is considered investigational to treat chronic lymphocytic leukemia or small lymphocytic lymphoma.

Considerations
“Poor-risk” disease for transplant purposes is classified according to the European Group for Blood and Marrow Transplantation’s CLL Transplant Consensus Criteria (see Reference 19) as having one of the following:
- Non-response or early relapse (within 12 months) after purine-analogue-containing therapy;
- Relapse (within 24 months) after purine analogue combination therapy or treatment of similar efficacy (i.e., autologous stem cell transplantation); OR

Staging and Prognosis of CLL/SLL
Two scoring systems are used to determine stage and prognosis of patients with CLL/SLL. As outlined in the Table 1, the Rai and Binet staging systems classify patients into 3 risk groups with different prognoses, and are used to make therapeutic decisions.

Table 1. Rai and Binet Classification for CLL/SLL

<table>
<thead>
<tr>
<th>Rai Stage</th>
<th>Risk</th>
<th>Description</th>
<th>Median Survival (yr)</th>
<th>Binet Stage</th>
<th>Description</th>
<th>Median Survival (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Low</td>
<td>Lymphocytosis</td>
<td>> 10</td>
<td>A</td>
<td>3 or fewer</td>
<td>> 10</td>
</tr>
</tbody>
</table>
lymphoid areas, normal hemoglobin and platelets

I	Intermediate	Lymphocytosis plus lymphadenopathy	7-9	B	3 or more lymphoid areas, normal hemoglobin and platelets	7
II	Intermediate	Lymphocytosis plus splenomegaly plus/minus lymphadenopathy	7-9			
III	High	Lymphocytosis plus anemia plus/minus lymphadenopathy or splenomegaly	1.5-5	C	Any number of lymphoid areas, anemia, thrombocytopenia	5
IV	High	Lymphocytosis plus thrombocytopenia plus/minus anemia, splenomegaly or lymphadenopathy	1.5-5			

lymphocytosis = lymphocytes > 15 x 10^9/L for 4 wks; anemia = hemoglobin < 110 g/L; thrombocytopenia = platelets < 100 x 10^9/L

Because prognosis of patients varies within the different Rai and Binet classifications, other prognostic markers are used in conjunction with staging to determine clinical management. These are summarized in Table 2, according to availability in clinical centers.

Table 2. Markers of Poor Prognosis in CLL/SLL

<table>
<thead>
<tr>
<th>Community Center</th>
<th>Specialized Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Rai or Binet stage</td>
<td>IgVh wild type</td>
</tr>
<tr>
<td>Male sex</td>
<td>Expression of ZAP-70 protein</td>
</tr>
<tr>
<td>Atypical morphology or CLL/PLL</td>
<td>del 11q22-q23 (loss of ATM gene)</td>
</tr>
<tr>
<td>Peripheral lymphocyte doubling time < 12 mos</td>
<td>del 17p13 (loss of p53)</td>
</tr>
<tr>
<td>CD38+</td>
<td>trisomy 12</td>
</tr>
<tr>
<td>Elevated beta2-microglobulin level</td>
<td>Elevated serum CD23</td>
</tr>
<tr>
<td>Diffuse marrow histology</td>
<td>Elevated serum tumor necrosis factor-a</td>
</tr>
<tr>
<td>Elevated serum lactate dehydrogenase level</td>
<td>Elevated serum thymidine kinase</td>
</tr>
<tr>
<td>Fludarabine resistance</td>
<td></td>
</tr>
</tbody>
</table>

Reduced-Intensity Conditioning for Allogeneic HSCT

Some patients for whom a conventional myeloablative allotransplant could be curative may be considered candidates for RIC allogeneic HSCT. These include those patients whose age (typically older than 60 years) or comorbidities (e.g., liver or kidney dysfunction, generalized debilitation, prior intensive chemotherapy, low Karnofsky Performance Status) preclude use of a standard myeloablative conditioning regimen. A patient who relapses following a conventional myeloablative allogeneic HSCT could undergo a second myeloablative procedure if a suitable donor is available and his or her medical status would permit it. However, this type of patient would likely undergo RIC prior to a second allogeneic HSCT if a complete remission could be re-induced with chemotherapy.
The ideal allogeneic donors are HLA-identical siblings, matched at the HLA-A, B, and DR loci (6 of 6). Related donors mismatched at one locus are also considered suitable donors. A matched, unrelated donor identified through the National Marrow Donor Registry is typically the next option considered. Recently, haploidentical donors - typically a parent or a child of the patient - with whom usually there is sharing of only 3 of the 6 major histocompatibility antigens, have been under investigation as a stem-cell source. The majority of patients will have such a donor; however, the risk of GVHD and overall morbidity of the procedure may be severe, and experience with these donors is not as extensive as that with matched donors.

Note: There are some state mandates in place that require insurance carriers to cover certain clinical trials under very specific guidelines. Please contact your BCBSKC representative for more information.

Description of Procedure or Service

Hematopoietic Stem-Cell Transplantation

Hematopoietic stem-cell transplantation (SCT) refers to a procedure in which hematopoietic stem cells are infused to restore bone marrow function in cancer patients who receive bone marrow-toxic doses of cytotoxic drugs, with or without whole-body radiation therapy. Stem cells from bone marrow may be obtained from the transplant recipient (autologous SCT, auto-SCT) or from a donor (allogeneic SCT, allo-SCT). They can be harvested from bone marrow, peripheral blood, or umbilical cord blood and placenta shortly after delivery of neonates. Although cord blood is an allogeneic source, the stem cells in it are antigenically "naïve" and thus are associated with a lower incidence of rejection or graft-versus-host disease. Cord blood is discussed in greater detail in a separate policy.

Immunologic compatibility between infused stem cells and the recipient is not an issue in auto-SCT. However, immunologic compatibility between donor and patient is a critical factor for achieving a good outcome of allo-SCT. Compatibility is established by typing of human leukocyte antigens (HLA) using cellular, serologic, or molecular techniques. HLA refers to the tissue type expressed at the HLA A, B, and DR loci on each arm of chromosome 6. Depending on the disease being treated, an acceptable donor will match the patient at all or most of the HLA loci.

Background

Conventional Preparative Conditioning for Hematopoietic SCT

The conventional ("classical") practice of allogeneic HSCT involves administration of cytotoxic agents (e.g., cyclophosphamide, busulfan) with or without total-body irradiation at doses sufficient to destroy endogenous hematopoietic capability in the recipient. The beneficial treatment effect in this procedure is due to a combination of initial eradication of malignant cells and subsequent graft-versus-malignancy (GVM) effect that develops after engraftment of allogeneic stem cells within the patient’s bone marrow space. The slower GVM effect is considered the potentially curative component, but it may be overwhelmed by extant disease without the use of pretransplant conditioning. However, intense conditioning regimens are limited to patients who are sufficiently fit medically to tolerate substantial adverse effects that include pre-engraftment opportunistic infections secondary to loss of endogenous bone marrow function and organ damage and failure caused by the cytotoxic drugs. Furthermore, in any allogeneic HSCT, immune suppressant drugs are required to minimize graft rejection and GVHD, which also increases susceptibility of the patient to opportunistic infections.

The success of autologous HSCT is predicated on the ability of cytotoxic chemotherapy with or without radiation to eradicate cancerous cells from the blood and bone marrow. This permits subsequent engraftment and repopulation of bone marrow space with presumably normal hematopoietic stem cells obtained from the patient prior to undergoing bone marrow ablation. As a consequence, autologous HSCT is typically performed as consolidation therapy when the patient’s disease is in complete remission. Patients who undergo autologous HSCT are susceptible to chemotherapy-related toxicities and opportunistic infections prior to engraftment, but not GVHD.

Reduced-Intensity Conditioning for Allogeneic HSCT
Reduced-intensity conditioning (RIC) refers to the pretransplant use of lower doses or less intense regimens of cytotoxic drugs or radiation than are used in conventional full-dose myeloablative conditioning treatments. The goal of RIC is to reduce disease burden but also to minimize as much as possible associated treatment-related morbidity and nonrelapse mortality (NRM) in the period during which the beneficial GVM effect of allogeneic transplantation develops. Although the definition of RIC remains arbitrary, with numerous versions employed, all seek to balance the competing effects of NRM and relapse due to residual disease. RIC regimens can be viewed as a continuum in effects, from nearly totally myeloablative to minimally myeloablative with lymphoablation, with intensity tailored to specific diseases and patient condition. Patients who undergo RIC with allogeneic HSCT initially demonstrate donor cell engraftment and bone marrow mixed chimerism. Most will subsequently convert to full-donor chimerism, which may be supplemented with donor lymphocyte infusions to eradicate residual malignant cells. For the purposes of this Policy, the term “reduced-intensity conditioning” will refer to all conditioning regimens intended to be nonmyeloablative, as opposed to fully myeloablative (conventional) regimens.

Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma

Chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) are neoplasms of hematopoietic origin characterized by the accumulation of lymphocytes with a mature, generally well-differentiated morphology. In CLL, these cells accumulate in blood, bone marrow, lymph nodes, and spleen, while in SLL they are generally confined to lymph nodes. The Revised European-American/WHO Classification of Lymphoid Neoplasms considers B-cell CLL and SLL a single disease entity.

CLL and SLL share many common features and are often referred to as blood and tissue counterparts of each other, respectively. Both tend to occur in older individuals and present as asymptomatic enlargement of the lymph nodes. Both tend to be indolent in nature but can undergo transformation to a more aggressive form of disease (e.g., Richter's transformation). The median age at diagnosis of CLL is approximately 72 years, but it may present in younger individuals, often as poor-risk disease with significantly reduced life expectancy.

Treatment regimens used for CLL are generally the same as those used for SLL, and outcomes of treatment are comparable for the 2 diseases. Both low- and intermediate-risk CLL and SLL demonstrate relatively good prognoses with median survivals of 6 to 10 years, while the median survival of high-risk CLL or SLL may be only 2 years. Although typically responsive to initial therapy, CLL and SLL are rarely cured by conventional therapy, and nearly all patients ultimately die of their disease. This natural history prompted investigation of hematopoietic stem-cell transplantation as a possible curative regimen.

Rationale

Literature Review

This policy was created in 1999, and has been updated regularly based on literature searches of the MEDLINE and EMBASE online databases. As of December 2013, no new evidence that would alter the existing Policy statements was identified.

The original Policy was based on 2 TEC Assessments. One from 1999 examined autologous hematopoietic stem-cell transplantation (autologous HSCT) for chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) (1); the other from 2002 was on allogeneic hematopoietic stem-cell transplantation (allogeneic HSCT) to treat CLL or SLL (2). Both documents indicated that existing data were insufficient to permit scientific conclusions regarding the use of either procedure, limited by interstudy heterogeneity in patient's baseline characteristics, procedural differences, sample size, and short follow-up. A direct comparative analysis from the International Bone Marrow Transplant Registry (IBMTR) commissioned by TEC in 2002 to analyze allogeneic HSCT results was insufficient to permit scientific conclusions on the net health outcome of this procedure for relapsed or refractory CLL or SLL.
Literature searches conducted between 2002 and July 2008 found no randomized trials of HSCT compared with conventional-dose therapy for CLL or SLL. Recent reviews discuss uncertainties with respect to the type of transplant (autologous vs allogeneic), the intensity of pretransplant conditioning, the optimal timing of transplantation in the disease course, the baseline patient characteristics that best predict likelihood of clinical benefit from transplant, and the long-term risks of adverse outcomes. (3-8) The conclusions reached in these reviews suggest that although autologous HSCT may prolong survival in selected patients with CLL or SLL, for example, those with chemotherapy-sensitive malignancy who had a good response to front-line therapy and transplanted early in the course of disease, it has not yet been shown to be curative.

Autologous HSCT

A systematic review of autologous HSCT for CLL or SLL included 9 studies (total n=361, 292 of which were transplanted) identified from a search of MEDLINE databases from 1966 to September 2006.(9) Studies were included if they were full-publication English language reports of prospective randomized, nonrandomized, or single-arm design. The analysis suggested that autologous HSCT may achieve significant clinical response rates (74%-100%) with relatively low treatment-related mortality (TRM) (0%–9%). However, molecular remissions are typically short-lived, with subsequent relapse. Overall survival (OS) ranged from 68% at 3-year follow-up to 58% at 6-year. Secondary myelodysplasia and myelodysplastic syndrome that may progress to frank acute myelogenous leukemia has been reported in 5% to 12% of patients in some studies of autologous HSCT, which suggests caution in considering this approach, especially given the indolent nature of CLL or SLL. The authors of the review concluded that in the absence of randomized, comparative studies, it is uncertain whether autologous HSCT is superior to conventional chemotherapy (or current chemo-immunotherapy) combinations as first-line consolidation treatment in CLL or SLL patients, regardless of disease risk, or as salvage therapy in those with relapsed disease.

The conclusions of the systematic review of autologous HSCT outlined above are congruent with results of the Phase III European Intergroup randomized trial that compared autologous HSCT (n=112) or postinduction observation (n=111) for consolidation in patients with CLL who were in complete remission (59% of total) or very good partial remission (27% of total) following fludarabine-containing induction therapy. (10) Patient age ranged from 31 to 65 years, with Binet stage A progressive (14%), B (66%), and C (20%) disease. None were known to have 17p deletion; 45% were known to not carry 17p deletion, but that status was unknown in 54% of all patients. The primary outcome, median event-free survival (EFS), was 51 months (range, 40-62) in the autograft group, compared with 24 months (range, 17-32) in the observed group; the 5-year EFS was 42% and 24%, respectively (p<0.001). The relapse rate at 5-year follow-up was 54% in the autograft group versus 76% in the observational group (p<0.001); median time to relapse requiring therapy or to death (whichever came first) was 65 months (range, 59-71) and 40 months (range, 25-56), respectively (p=0.002). Overall survival probability at 5-year follow-up was 86% (95% confidence interval [CI], 77% to 94%) in the autograft arm, versus 84% (95% CI, 75% to 93%) in the observation arm (p=0.77), with no evidence of a plateau in the curves. There was no significant difference in nonrelapse mortality (NRM) between groups, 4% in the autologous HSCT group and 0% in the observation group (p=0.33). Myelodysplastic syndrome was observed at follow-up in 3 patients receiving an autograft and in 1 patient in the observational group.

In a subsequent report published in 2013, the authors of the European Intergroup randomized controlled trial (RCT) presented quality-of-life (QOL) findings from this trial.(11) Two secondary analyses were performed to further investigate the impact of HSCT and relapse on QOL. In the primary analysis, the authors demonstrate an adverse impact of HSCT on QOL, which was largest at 4 months and continued throughout the first year after randomization. Further, a sustained adverse impact of relapse on QOL was observed, which worsened over time. Thus, despite better disease control by autologous HSCT, the side effects turned the net effect toward inferior QOL in the first year and comparable QOL in the following 2 years after randomization.
A subsequent prospective, RCT assessed the efficacy of autologous HSCT in previously untreated CLL patients. (12) A total of 244 patients (181 men) of median age 56 years (range, 31-66) had Binet stage B (n=185) or C (n=56) disease. Among enrollees, 237 started planned therapy, 6 of whom discontinued. All 231 patients underwent induction chemotherapy; 103 (45%) entered complete remission and were randomly allocated to autologous HSCT (n=52) or observation (n=53). The 3-year estimated OS rates were 98% (95% CI, 94% to 100%) in the observation arm, and 96% (95% CI, 90% to 100%) in the HSCT arm (p=0.73). The estimated hazard ratio for death was 1.2 (95% CI, 0.3 to 3.8) in the HSCT arm relative to the observation arm (p=0.82). During the 36 months after randomization, HSCT was associated, on average, with an extra 9 months without clinical symptoms or blood signs of CLL progression (32±1 month) compared with observation (23±2 months). An editorial that accompanied this report suggests using autologous HSCT in this setting may prolong time to progression compared with observation, but that because OS is not improved, autologous HSCT remains investigational for CLL/SLL patients.(13,14)

The results of the GOELAMS LLC 98 randomized trial were published in final form in 2012.(15) This trial aimed to compare 2 strategies in previously untreated high-risk CLL patients 60 years-old or younger. Arm A comprised conventional chemotherapy of 6 monthly courses of CHOP (vincristine, doxorubicin, and oral prednisone) followed by 6 additional CHOP courses every 3 months in patients who achieved a partial response (PR) or complete response (CR). Arm B consisted of 3 monthly CHOP courses; patients who achieved a very good partial response (VGPR) or CR received consolidation therapy consisting of high-dose cyclophosphamide plus total-body irradiation followed by autologous HSCT; rituximab was not used in this study. Among 86 total patients, 39 and 43 were evaluable in arms A and B, respectively. The primary outcome was progression-free survival (PFS); on an intention-to-treat basis, the median PFS reached 22 months in arm A and 53 months in arm B at median follow-up of 77 months (p<0.001). Median OS time, however, was 104.7 months (95% CI, 99.9 to 109.5) in arm A and 107.4 months (95% CI, 58.2 to 156.6) in arm B, a nonsignificant difference. This trial shows that front-line high-dose therapy with autologous HSCT prolongs PFS but does not significantly improve the duration of OS.

Allogeneic HSCT

Allogeneic HSCT has been under investigation for the past 2 decades based on a potent graft-versus-leukemia (GVL) effect expressed as a permanently active cellular immune therapy in the recipient, independent of chemotherapy-related cytotoxicity. As indicated in the Description section of this policy, allogeneic HSCT may include use of myeloablative or reduced-intensity pretransplant conditioning regimens.

Data compiled in numerous review articles suggest that myeloablative allogeneic HSCT has curative potential for CLL or SLL.(6-8,16) Long-term disease control (33%-65% OS at 3-6 years) due to a low rate of late recurrences has been observed in all published series, regardless of donor source or conditioning regimen.(17) However, high rates (24%-47%) of TRM discourage this approach in early or lower-risk disease, particularly among older patients whose health status typically precludes the use of myeloablative conditioning.

The development of reduced-intensity conditioning (RIC) regimens has extended the use of allogeneic HSCT to older or less fit patients who account for the larger proportion of this disease than younger patients, as outlined in several recent review articles.(7,17,18) Six published nonrandomized studies involved a total of 328 patients with advanced CLL who underwent RIC allogeneic HSCT using conditioning regimens that included fludarabine in various combinations that included cyclophosphamide, busulfan, rituximab, alemtuzumab, and total-body irradiation.(19-24) The majority of patients in these series were heavily pretreated, with a median of 3 to 5 courses of prior regimens. Among individual studies, 27%-57% of patients had chemotherapy-refractory disease, genetic abnormalities including del 17p13, del 11q22, and VH unmutated, or a combination of those characteristics. A substantial proportion in each study (18%-67%) received stem cells from a donor other than a human leukocyte antigen (HLA)–identical sibling. Reported NRM, associated primarily with
graft-versus-host disease (GVHD) and its complications, ranged from 2% at 100 days to 26% overall at median follow-up that ranged from 1.7 to 5 years. Overall survival rates ranged from 48% to 70% at follow-up that ranged from 2 to 5 years. Similar results were reported for progression-free survival (PFS), 34% to 58% at 2- to 5-year follow-up. Very similar results were reported from a Phase II study published in 2010 of RIC allogeneic HSCT in patients (n=90; median age, 53 years; range, 27-65) with poor-risk CLL, defined as having one of the following: refractoriness or early relapse (ie, <12 months) after purine-analog therapy; relapse after autologous HSCT; or, progressive disease in the presence of an unfavorable genetic marker (11q or 17p deletion, and/or unmutated IgVh status and/or usage of the VH3-21 gene). With a median follow-up of 46 months, 4-year NRM, EFS, and OS were 23%, 42%, and 65%, respectively. EFS was similar for all genetic subsets, including those with a 17p deletion mutation.

Summary

The body of evidence from single-arm prospective and registry-based studies suggests allogeneic hematopoietic stem-cell transplantation (HSCT) can provide long-term disease control and overall survival in patients with poor-risk chronic lymphocytic leukemia (CLL)/small lymphocytic leukemia (SLL). This conclusion is supported by clinical input from transplant specialists as noted below. Until recently, it has been unclear what patient- and disease-specific characteristics can be used to select patients who could benefit from allogeneic HSCT compared with those for whom less-intense or no therapy may be indicated. This question has been addressed by investigations of cytogenetic and molecular abnormalities that can be associated with differential response to various therapies.(26) Some of these are outlined in Table 2 in the Policy Guidelines section above.

Autologous HSCT is feasible in younger patients but is not curative, particularly in those with poor-risk CLL. None of the studies of autologous HSCT published to date has shown a plateau in overall survival at 4 to 6 years posttransplant. It may result in prolongation of overall survival, compared with conventional therapy, but this must be considered in the context of improved outcomes using conventional chemoimmunotherapy. Furthermore, evidence from the European Intergroup randomized controlled trial suggests quality-of-life issues are important in selecting patients for autologous HSCT and may dictate the management course for individuals who are otherwise candidates for this approach.

Practice Guidelines and Position Statements

European Group for Blood and Marrow Transplantation

In June 2005, the European Group for Blood and Marrow Transplantation (EBMT) convened a consensus panel to identify situations in which allogeneic HSCT is indicated for patients with CLL.(27) Information for this evidence-based consensus was based on a MEDLINE search, meeting abstracts, and unpublished investigator-derived data. The panel considered 4 key issues:

- Does graft-versus-leukemia (GVL) activity in CLL exist?
- If yes, is it effective in high-risk CLL?
- What is the success rate of allogeneic HSCT in CLL?
- Which prognostic risk level justifies allogeneic HSCT?

The EBMT panel concluded that sound evidence exists that GVL activity is effective and represents the main contributor to durable disease control after allogeneic HSCT, even in poor-risk patients. It further concluded that long-term disease-free survival and possibly cure may be achieved in 33%-67% of patients who undergo allogeneic HSCT for poor-risk CLL. Although allogeneic HSCT for CLL is a procedure with evidence-based efficacy for poor-risk CLL, evidence is not sufficient to identify a generally superior conditioning regimen. The optimum choice of conditioning regimens may vary: in the presence of older age, comorbidity and sensitive disease; RIC regimens might be appropriate, whereas myeloablative regimens might be preferable in younger patients with good performance status but poorly controlled disease. The EBMT statement further suggests that these cases be discussed with a
transplant center as early as possible to avoid extensive cytotoxic pretreatment or disease transformation. Furthermore, because the optimum transplant strategy may vary according to the clinical situation, it should be defined whenever possible in approved prospective clinical protocols.

National Cancer Institute Working Group on CLL

In 1988 and 1996, a National Cancer Institute Working Group (NCI-WG) on CLL published guidelines for the design and conduct of clinical trials to facilitate comparisons between treatments and establish definitions that could be used in scientific studies on the biology of this disease. The U.S. Food and Drug Administration (FDA) also adopted these guidelines in their evaluation and approval of new agents. An updated version of the NCI-WG guidelines has been published that provides management recommendations based on new prognostic markers, diagnostic parameters, and treatment options. (28)

National Comprehensive Cancer Network Guidelines

Current National Comprehensive Cancer Network (NCCN) Guidelines (v1.2014) for non-Hodgkin’s lymphoma do not include autologous HSCT as a therapeutic option in CLL or SLL. NCCN indicates that allogeneic HSCT (conditioning regimen unspecified) may be considered, preferably in a clinical trial, for patients younger than age 70 years with high-risk disease (Rai high risk, or del17p,11q) or as salvage treatment in those with progressive or relapsed disease.

Clinical Input Received through Physician Specialty Societies and Academic Medical Centers

In response to requests, input was received from 1 specialty medical center reviewer, 1 academic medical center reviewer, and 2 Blue Distinction Center reviewers while this policy was under review. Although the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted. Three of 4 reviewers agree that allogeneic HSCT was of value in patients who have poor-risk CLL (see Policy Guidelines section) and that this procedure should be medically necessary in this setting. However, the reviewers indicate that the specific approach (eg, RIC versus myeloablative conditioning) should be individualized based upon criteria such as age and health status. All reviewers concur with the policy statement that autologous HSCT is investigational.

National Cancer Institute Clinical Trials Database (PDQ®)

In December 2013, the National Cancer Institute Clinical Trials Database indicated 7 phase II/III trials that focused on a variety of HSCT approaches for treatment of CLL or SLL, primarily relapsed or refractory disease, second-line therapy or more, available online at: http://www.cancer.gov/clinicaltrials/search/results?protocolsearchid=7157492.

References
2. Blue Cross and Blue Shield Association (TEC). High-dose chemotherapy plus allogeneic stem cells to treat chronic lymphocytic leukemia or small lymphocytic lymphoma. TEC Assessments 2002, Volume 17, Tab 4.

Billing Coding/Physician Documentation Information

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>38204</td>
<td>Management of recipient hematopoietic progenitor cell donor search and cell acquisition</td>
</tr>
<tr>
<td>38205</td>
<td>Blood-derived hematopoietic progenitor cell harvesting for transplantation, per collection; allogenic</td>
</tr>
<tr>
<td>38206</td>
<td>Blood-derived hematopoietic progenitor cell harvesting for transplantation, per collection; autologous</td>
</tr>
<tr>
<td>38207</td>
<td>Transplant preparation of hematopoietic progenitor cells; cryopreservation and storage</td>
</tr>
<tr>
<td>38208</td>
<td>Transplant preparation of hematopoietic progenitor cells; thawing of previously frozen harvest, without washing</td>
</tr>
<tr>
<td>38209</td>
<td>Transplant preparation of hematopoietic progenitor cells; thawing of previously frozen harvest, with washing</td>
</tr>
<tr>
<td>38210</td>
<td>Transplant preparation of hematopoietic progenitor cells; specific cell depletion within harvest, T-cell depletion</td>
</tr>
<tr>
<td>38211</td>
<td>Transplant preparation of hematopoietic progenitor cells; tumor cell depletion</td>
</tr>
<tr>
<td>38212</td>
<td>Transplant preparation of hematopoietic progenitor cells; red blood cell removal</td>
</tr>
<tr>
<td>38213</td>
<td>Transplant preparation of hematopoietic progenitor cells; platelet depletion</td>
</tr>
<tr>
<td>38214</td>
<td>Transplant preparation of hematopoietic progenitor cells; plasma (volume) depletion</td>
</tr>
<tr>
<td>38215</td>
<td>Transplant preparation of hematopoietic progenitor cells; cell concentration in plasma, mononuclear, or buffy coat layer</td>
</tr>
<tr>
<td>38220</td>
<td>Bone marrow; aspiration only</td>
</tr>
<tr>
<td>38221</td>
<td>Bone marrow; biopsy, needle or trocar</td>
</tr>
<tr>
<td>38230</td>
<td>Bone marrow harvesting for transplantation; allogeneic</td>
</tr>
<tr>
<td>38232</td>
<td>Bone marrow harvesting for transplantation; autologous</td>
</tr>
<tr>
<td>38240</td>
<td>Bone marrow or blood-derived peripheral stem cell transplantation; allogenic</td>
</tr>
<tr>
<td>38241</td>
<td>Bone marrow or blood-derived peripheral stem cell transplantation; autologous</td>
</tr>
<tr>
<td>38242</td>
<td>Bone marrow or blood-derived peripheral stem cell transplantation; allogeneic donor lymphocyte infusions</td>
</tr>
<tr>
<td>S2140</td>
<td>Cord blood harvesting for transplantation, allogeneic</td>
</tr>
<tr>
<td>S2142</td>
<td>Cord blood-derived stem transplantation, allogeneic</td>
</tr>
<tr>
<td>S2150</td>
<td>Bone marrow or blood-derived stem cells (peripheral or umbilical), allogeneic or autologous, harvesting, transplantation, and related complications; including: pheresis and cell preparation/storage; marrow ablative therapy; drugs, supplies, hospitalization with outpatient follow-up; medical/surgical, diagnostic, emergency, and rehabilitative services; and the number of days pre- and post-transplant care in the global definition</td>
</tr>
</tbody>
</table>

Additional Policy Key Words

N/A

Policy Implementation/Update Information

12/1/01 New policy.
12/1/02 No policy statement changes. Added new codes.
12/1/03 No policy statement changes. Deleted codes.
12/1/04 No policy statement changes. Added new G-codes (G0265, G0266, and G0267). Added statement that this requires prior authorization.
12/1/05 No policy statement changes.
12/1/06 No policy statement changes.
12/1/07 No policy statement changes.
12/1/08 Policy reviewed with literature search and revised extensively; “high-dose chemotherapy” removed from policy title and policy statements. “Stem-cell transplantation” (SCT) now used instead of “stem-cell support” (SCS) in policy and policy statements. Intent of current policy statements unchanged. References 5-9 and 11 added; reference 12 updated
12/1/09 No policy statement changes.
1/14/10 Interim change. Policy statement regarding allogeneic transplant in patients with markers of poor-risk disease changed; now may be considered medically necessary.
12/1/10 No policy statement changes.
12/1/11 No policy statement changes.
6/1/12 No policy statement changes.
6/1/13 No policy statement changes.
6/1/14 No policy statement changes. Added CPT codes 38230, 38232

State and Federal mandates and health plan contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. The medical policies contained herein are for informational purposes. The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents Blue KC and are solely responsible for diagnosis, treatment and medical advice. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, or otherwise, without permission from Blue KC.